This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express the negative of a vector. (Contributed by NM, 23-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hv2neg | |- ( A e. ~H -> ( 0h -h A ) = ( -u 1 .h A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl | |- 0h e. ~H |
|
| 2 | hvsubval | |- ( ( 0h e. ~H /\ A e. ~H ) -> ( 0h -h A ) = ( 0h +h ( -u 1 .h A ) ) ) |
|
| 3 | 1 2 | mpan | |- ( A e. ~H -> ( 0h -h A ) = ( 0h +h ( -u 1 .h A ) ) ) |
| 4 | neg1cn | |- -u 1 e. CC |
|
| 5 | hvmulcl | |- ( ( -u 1 e. CC /\ A e. ~H ) -> ( -u 1 .h A ) e. ~H ) |
|
| 6 | 4 5 | mpan | |- ( A e. ~H -> ( -u 1 .h A ) e. ~H ) |
| 7 | hvaddlid | |- ( ( -u 1 .h A ) e. ~H -> ( 0h +h ( -u 1 .h A ) ) = ( -u 1 .h A ) ) |
|
| 8 | 6 7 | syl | |- ( A e. ~H -> ( 0h +h ( -u 1 .h A ) ) = ( -u 1 .h A ) ) |
| 9 | 3 8 | eqtrd | |- ( A e. ~H -> ( 0h -h A ) = ( -u 1 .h A ) ) |