This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction of a zero vector. (Contributed by NM, 2-Apr-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvsub0 | |- ( A e. ~H -> ( A -h 0h ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl | |- 0h e. ~H |
|
| 2 | hvsubval | |- ( ( A e. ~H /\ 0h e. ~H ) -> ( A -h 0h ) = ( A +h ( -u 1 .h 0h ) ) ) |
|
| 3 | 1 2 | mpan2 | |- ( A e. ~H -> ( A -h 0h ) = ( A +h ( -u 1 .h 0h ) ) ) |
| 4 | neg1cn | |- -u 1 e. CC |
|
| 5 | hvmul0 | |- ( -u 1 e. CC -> ( -u 1 .h 0h ) = 0h ) |
|
| 6 | 4 5 | ax-mp | |- ( -u 1 .h 0h ) = 0h |
| 7 | 6 | oveq2i | |- ( A +h ( -u 1 .h 0h ) ) = ( A +h 0h ) |
| 8 | 3 7 | eqtrdi | |- ( A e. ~H -> ( A -h 0h ) = ( A +h 0h ) ) |
| 9 | ax-hvaddid | |- ( A e. ~H -> ( A +h 0h ) = A ) |
|
| 10 | 8 9 | eqtrd | |- ( A e. ~H -> ( A -h 0h ) = A ) |