This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Norm of differences around common element. (Contributed by NM, 18-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | norm3dif2 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( normh ` ( A -h B ) ) <_ ( ( normh ` ( C -h A ) ) + ( normh ` ( C -h B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norm3dif | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( normh ` ( A -h B ) ) <_ ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) ) |
|
| 2 | normsub | |- ( ( A e. ~H /\ C e. ~H ) -> ( normh ` ( A -h C ) ) = ( normh ` ( C -h A ) ) ) |
|
| 3 | 2 | 3adant2 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( normh ` ( A -h C ) ) = ( normh ` ( C -h A ) ) ) |
| 4 | 3 | oveq1d | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) = ( ( normh ` ( C -h A ) ) + ( normh ` ( C -h B ) ) ) ) |
| 5 | 1 4 | breqtrd | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( normh ` ( A -h B ) ) <_ ( ( normh ` ( C -h A ) ) + ( normh ` ( C -h B ) ) ) ) |