This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Norm of differences around common element. (Contributed by NM, 18-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | norm3dif2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ≤ ( ( normℎ ‘ ( 𝐶 −ℎ 𝐴 ) ) + ( normℎ ‘ ( 𝐶 −ℎ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norm3dif | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ≤ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) + ( normℎ ‘ ( 𝐶 −ℎ 𝐵 ) ) ) ) | |
| 2 | normsub | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) = ( normℎ ‘ ( 𝐶 −ℎ 𝐴 ) ) ) | |
| 3 | 2 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) = ( normℎ ‘ ( 𝐶 −ℎ 𝐴 ) ) ) |
| 4 | 3 | oveq1d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) + ( normℎ ‘ ( 𝐶 −ℎ 𝐵 ) ) ) = ( ( normℎ ‘ ( 𝐶 −ℎ 𝐴 ) ) + ( normℎ ‘ ( 𝐶 −ℎ 𝐵 ) ) ) ) |
| 5 | 1 4 | breqtrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ≤ ( ( normℎ ‘ ( 𝐶 −ℎ 𝐴 ) ) + ( normℎ ‘ ( 𝐶 −ℎ 𝐵 ) ) ) ) |