This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Norm of differences around common element. Part of Lemma 3.6 of Beran p. 101. (Contributed by NM, 20-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | norm3dif | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( normh ` ( A -h B ) ) <_ ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A -h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ) |
|
| 2 | fvoveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A -h C ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) ) |
|
| 3 | 2 | oveq1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) = ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) + ( normh ` ( C -h B ) ) ) ) |
| 4 | 1 3 | breq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( A -h B ) ) <_ ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) <_ ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) + ( normh ` ( C -h B ) ) ) ) ) |
| 5 | oveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) -h B ) = ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) |
|
| 6 | 5 | fveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ) |
| 7 | oveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( C -h B ) = ( C -h if ( B e. ~H , B , 0h ) ) ) |
|
| 8 | 7 | fveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( C -h B ) ) = ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) ) |
| 9 | 8 | oveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) + ( normh ` ( C -h B ) ) ) = ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) + ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) ) ) |
| 10 | 6 9 | breq12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) <_ ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) + ( normh ` ( C -h B ) ) ) <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) <_ ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) + ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) ) ) ) |
| 11 | oveq2 | |- ( C = if ( C e. ~H , C , 0h ) -> ( if ( A e. ~H , A , 0h ) -h C ) = ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) |
|
| 12 | 11 | fveq2d | |- ( C = if ( C e. ~H , C , 0h ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) ) |
| 13 | fvoveq1 | |- ( C = if ( C e. ~H , C , 0h ) -> ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) = ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ) |
|
| 14 | 12 13 | oveq12d | |- ( C = if ( C e. ~H , C , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) + ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) ) = ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) + ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ) ) |
| 15 | 14 | breq2d | |- ( C = if ( C e. ~H , C , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) <_ ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) + ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) ) <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) <_ ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) + ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ) ) ) |
| 16 | ifhvhv0 | |- if ( A e. ~H , A , 0h ) e. ~H |
|
| 17 | ifhvhv0 | |- if ( B e. ~H , B , 0h ) e. ~H |
|
| 18 | ifhvhv0 | |- if ( C e. ~H , C , 0h ) e. ~H |
|
| 19 | 16 17 18 | norm3difi | |- ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) <_ ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) + ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ) |
| 20 | 4 10 15 19 | dedth3h | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( normh ` ( A -h B ) ) <_ ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) ) |