This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma involving norm of differences in Hilbert space. (Contributed by NM, 18-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | norm3lemt | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. RR ) ) -> ( ( ( normh ` ( A -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) -> ( normh ` ( A -h B ) ) < D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A -h C ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) ) |
|
| 2 | 1 | breq1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( A -h C ) ) < ( D / 2 ) <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) ) ) |
| 3 | 2 | anbi1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( normh ` ( A -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) <-> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) ) ) |
| 4 | fvoveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A -h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ) |
|
| 5 | 4 | breq1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( A -h B ) ) < D <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) < D ) ) |
| 6 | 3 5 | imbi12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( ( normh ` ( A -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) -> ( normh ` ( A -h B ) ) < D ) <-> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) < D ) ) ) |
| 7 | oveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( C -h B ) = ( C -h if ( B e. ~H , B , 0h ) ) ) |
|
| 8 | 7 | fveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( C -h B ) ) = ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) ) |
| 9 | 8 | breq1d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( C -h B ) ) < ( D / 2 ) <-> ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) ) |
| 10 | 9 | anbi2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) <-> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) ) ) |
| 11 | oveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) -h B ) = ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) |
|
| 12 | 11 | fveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ) |
| 13 | 12 | breq1d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) < D <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < D ) ) |
| 14 | 10 13 | imbi12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) < D ) <-> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < D ) ) ) |
| 15 | oveq2 | |- ( C = if ( C e. ~H , C , 0h ) -> ( if ( A e. ~H , A , 0h ) -h C ) = ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) |
|
| 16 | 15 | fveq2d | |- ( C = if ( C e. ~H , C , 0h ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) ) |
| 17 | 16 | breq1d | |- ( C = if ( C e. ~H , C , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( D / 2 ) ) ) |
| 18 | fvoveq1 | |- ( C = if ( C e. ~H , C , 0h ) -> ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) = ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ) |
|
| 19 | 18 | breq1d | |- ( C = if ( C e. ~H , C , 0h ) -> ( ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) <-> ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) ) |
| 20 | 17 19 | anbi12d | |- ( C = if ( C e. ~H , C , 0h ) -> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) <-> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( D / 2 ) /\ ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) ) ) |
| 21 | 20 | imbi1d | |- ( C = if ( C e. ~H , C , 0h ) -> ( ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < D ) <-> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( D / 2 ) /\ ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < D ) ) ) |
| 22 | oveq1 | |- ( D = if ( D e. RR , D , 2 ) -> ( D / 2 ) = ( if ( D e. RR , D , 2 ) / 2 ) ) |
|
| 23 | 22 | breq2d | |- ( D = if ( D e. RR , D , 2 ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( D / 2 ) <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( if ( D e. RR , D , 2 ) / 2 ) ) ) |
| 24 | 22 | breq2d | |- ( D = if ( D e. RR , D , 2 ) -> ( ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) <-> ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( if ( D e. RR , D , 2 ) / 2 ) ) ) |
| 25 | 23 24 | anbi12d | |- ( D = if ( D e. RR , D , 2 ) -> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( D / 2 ) /\ ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) <-> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( if ( D e. RR , D , 2 ) / 2 ) /\ ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( if ( D e. RR , D , 2 ) / 2 ) ) ) ) |
| 26 | breq2 | |- ( D = if ( D e. RR , D , 2 ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < D <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < if ( D e. RR , D , 2 ) ) ) |
|
| 27 | 25 26 | imbi12d | |- ( D = if ( D e. RR , D , 2 ) -> ( ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( D / 2 ) /\ ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < D ) <-> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( if ( D e. RR , D , 2 ) / 2 ) /\ ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( if ( D e. RR , D , 2 ) / 2 ) ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < if ( D e. RR , D , 2 ) ) ) ) |
| 28 | ifhvhv0 | |- if ( A e. ~H , A , 0h ) e. ~H |
|
| 29 | ifhvhv0 | |- if ( B e. ~H , B , 0h ) e. ~H |
|
| 30 | ifhvhv0 | |- if ( C e. ~H , C , 0h ) e. ~H |
|
| 31 | 2re | |- 2 e. RR |
|
| 32 | 31 | elimel | |- if ( D e. RR , D , 2 ) e. RR |
| 33 | 28 29 30 32 | norm3lem | |- ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( if ( D e. RR , D , 2 ) / 2 ) /\ ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( if ( D e. RR , D , 2 ) / 2 ) ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < if ( D e. RR , D , 2 ) ) |
| 34 | 6 14 21 27 33 | dedth4h | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. RR ) ) -> ( ( ( normh ` ( A -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) -> ( normh ` ( A -h B ) ) < D ) ) |