This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an integer has a rational square root, that root is must be an integer. (Contributed by Stefan O'Rear, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zsqrtelqelz | |- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( sqrt ` A ) e. ZZ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qdencl | |- ( ( sqrt ` A ) e. QQ -> ( denom ` ( sqrt ` A ) ) e. NN ) |
|
| 2 | 1 | adantl | |- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( denom ` ( sqrt ` A ) ) e. NN ) |
| 3 | 2 | nnred | |- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( denom ` ( sqrt ` A ) ) e. RR ) |
| 4 | 1red | |- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> 1 e. RR ) |
|
| 5 | 2 | nnnn0d | |- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( denom ` ( sqrt ` A ) ) e. NN0 ) |
| 6 | 5 | nn0ge0d | |- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> 0 <_ ( denom ` ( sqrt ` A ) ) ) |
| 7 | 0le1 | |- 0 <_ 1 |
|
| 8 | 7 | a1i | |- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> 0 <_ 1 ) |
| 9 | sq1 | |- ( 1 ^ 2 ) = 1 |
|
| 10 | 9 | a1i | |- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( 1 ^ 2 ) = 1 ) |
| 11 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 12 | 11 | sqsqrtd | |- ( A e. ZZ -> ( ( sqrt ` A ) ^ 2 ) = A ) |
| 13 | 12 | adantr | |- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |
| 14 | 13 | fveq2d | |- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( denom ` ( ( sqrt ` A ) ^ 2 ) ) = ( denom ` A ) ) |
| 15 | simpl | |- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> A e. ZZ ) |
|
| 16 | zq | |- ( A e. ZZ -> A e. QQ ) |
|
| 17 | 16 | adantr | |- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> A e. QQ ) |
| 18 | qden1elz | |- ( A e. QQ -> ( ( denom ` A ) = 1 <-> A e. ZZ ) ) |
|
| 19 | 17 18 | syl | |- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( ( denom ` A ) = 1 <-> A e. ZZ ) ) |
| 20 | 15 19 | mpbird | |- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( denom ` A ) = 1 ) |
| 21 | 14 20 | eqtrd | |- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( denom ` ( ( sqrt ` A ) ^ 2 ) ) = 1 ) |
| 22 | densq | |- ( ( sqrt ` A ) e. QQ -> ( denom ` ( ( sqrt ` A ) ^ 2 ) ) = ( ( denom ` ( sqrt ` A ) ) ^ 2 ) ) |
|
| 23 | 22 | adantl | |- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( denom ` ( ( sqrt ` A ) ^ 2 ) ) = ( ( denom ` ( sqrt ` A ) ) ^ 2 ) ) |
| 24 | 10 21 23 | 3eqtr2rd | |- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( ( denom ` ( sqrt ` A ) ) ^ 2 ) = ( 1 ^ 2 ) ) |
| 25 | 3 4 6 8 24 | sq11d | |- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( denom ` ( sqrt ` A ) ) = 1 ) |
| 26 | qden1elz | |- ( ( sqrt ` A ) e. QQ -> ( ( denom ` ( sqrt ` A ) ) = 1 <-> ( sqrt ` A ) e. ZZ ) ) |
|
| 27 | 26 | adantl | |- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( ( denom ` ( sqrt ` A ) ) = 1 <-> ( sqrt ` A ) e. ZZ ) ) |
| 28 | 25 27 | mpbid | |- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( sqrt ` A ) e. ZZ ) |