This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bounded real sequence A ( k ) is less than or equal to at least one of its indices. (Contributed by NM, 18-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bndndx | |- ( E. x e. RR A. k e. NN ( A e. RR /\ A <_ x ) -> E. k e. NN A <_ k ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | arch | |- ( x e. RR -> E. k e. NN x < k ) |
|
| 2 | nnre | |- ( k e. NN -> k e. RR ) |
|
| 3 | lelttr | |- ( ( A e. RR /\ x e. RR /\ k e. RR ) -> ( ( A <_ x /\ x < k ) -> A < k ) ) |
|
| 4 | ltle | |- ( ( A e. RR /\ k e. RR ) -> ( A < k -> A <_ k ) ) |
|
| 5 | 4 | 3adant2 | |- ( ( A e. RR /\ x e. RR /\ k e. RR ) -> ( A < k -> A <_ k ) ) |
| 6 | 3 5 | syld | |- ( ( A e. RR /\ x e. RR /\ k e. RR ) -> ( ( A <_ x /\ x < k ) -> A <_ k ) ) |
| 7 | 6 | exp5o | |- ( A e. RR -> ( x e. RR -> ( k e. RR -> ( A <_ x -> ( x < k -> A <_ k ) ) ) ) ) |
| 8 | 7 | com3l | |- ( x e. RR -> ( k e. RR -> ( A e. RR -> ( A <_ x -> ( x < k -> A <_ k ) ) ) ) ) |
| 9 | 8 | imp4b | |- ( ( x e. RR /\ k e. RR ) -> ( ( A e. RR /\ A <_ x ) -> ( x < k -> A <_ k ) ) ) |
| 10 | 9 | com23 | |- ( ( x e. RR /\ k e. RR ) -> ( x < k -> ( ( A e. RR /\ A <_ x ) -> A <_ k ) ) ) |
| 11 | 2 10 | sylan2 | |- ( ( x e. RR /\ k e. NN ) -> ( x < k -> ( ( A e. RR /\ A <_ x ) -> A <_ k ) ) ) |
| 12 | 11 | reximdva | |- ( x e. RR -> ( E. k e. NN x < k -> E. k e. NN ( ( A e. RR /\ A <_ x ) -> A <_ k ) ) ) |
| 13 | 1 12 | mpd | |- ( x e. RR -> E. k e. NN ( ( A e. RR /\ A <_ x ) -> A <_ k ) ) |
| 14 | r19.35 | |- ( E. k e. NN ( ( A e. RR /\ A <_ x ) -> A <_ k ) <-> ( A. k e. NN ( A e. RR /\ A <_ x ) -> E. k e. NN A <_ k ) ) |
|
| 15 | 13 14 | sylib | |- ( x e. RR -> ( A. k e. NN ( A e. RR /\ A <_ x ) -> E. k e. NN A <_ k ) ) |
| 16 | 15 | rexlimiv | |- ( E. x e. RR A. k e. NN ( A e. RR /\ A <_ x ) -> E. k e. NN A <_ k ) |