This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitive property of divisibility: if A divides B and B divides C , then A divides C . Typically, C would be an integer, although the theorem holds for complex C . (Contributed by NM, 3-May-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nndivtr | |- ( ( ( A e. NN /\ B e. NN /\ C e. CC ) /\ ( ( B / A ) e. NN /\ ( C / B ) e. NN ) ) -> ( C / A ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnmulcl | |- ( ( ( B / A ) e. NN /\ ( C / B ) e. NN ) -> ( ( B / A ) x. ( C / B ) ) e. NN ) |
|
| 2 | nncn | |- ( B e. NN -> B e. CC ) |
|
| 3 | 2 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. CC ) -> B e. CC ) |
| 4 | simp3 | |- ( ( A e. NN /\ B e. NN /\ C e. CC ) -> C e. CC ) |
|
| 5 | nncn | |- ( A e. NN -> A e. CC ) |
|
| 6 | nnne0 | |- ( A e. NN -> A =/= 0 ) |
|
| 7 | 5 6 | jca | |- ( A e. NN -> ( A e. CC /\ A =/= 0 ) ) |
| 8 | 7 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. CC ) -> ( A e. CC /\ A =/= 0 ) ) |
| 9 | nnne0 | |- ( B e. NN -> B =/= 0 ) |
|
| 10 | 2 9 | jca | |- ( B e. NN -> ( B e. CC /\ B =/= 0 ) ) |
| 11 | 10 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. CC ) -> ( B e. CC /\ B =/= 0 ) ) |
| 12 | divmul24 | |- ( ( ( B e. CC /\ C e. CC ) /\ ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) ) -> ( ( B / A ) x. ( C / B ) ) = ( ( B / B ) x. ( C / A ) ) ) |
|
| 13 | 3 4 8 11 12 | syl22anc | |- ( ( A e. NN /\ B e. NN /\ C e. CC ) -> ( ( B / A ) x. ( C / B ) ) = ( ( B / B ) x. ( C / A ) ) ) |
| 14 | 2 9 | dividd | |- ( B e. NN -> ( B / B ) = 1 ) |
| 15 | 14 | oveq1d | |- ( B e. NN -> ( ( B / B ) x. ( C / A ) ) = ( 1 x. ( C / A ) ) ) |
| 16 | 15 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. CC ) -> ( ( B / B ) x. ( C / A ) ) = ( 1 x. ( C / A ) ) ) |
| 17 | divcl | |- ( ( C e. CC /\ A e. CC /\ A =/= 0 ) -> ( C / A ) e. CC ) |
|
| 18 | 17 | 3expb | |- ( ( C e. CC /\ ( A e. CC /\ A =/= 0 ) ) -> ( C / A ) e. CC ) |
| 19 | 7 18 | sylan2 | |- ( ( C e. CC /\ A e. NN ) -> ( C / A ) e. CC ) |
| 20 | 19 | ancoms | |- ( ( A e. NN /\ C e. CC ) -> ( C / A ) e. CC ) |
| 21 | 20 | mullidd | |- ( ( A e. NN /\ C e. CC ) -> ( 1 x. ( C / A ) ) = ( C / A ) ) |
| 22 | 21 | 3adant2 | |- ( ( A e. NN /\ B e. NN /\ C e. CC ) -> ( 1 x. ( C / A ) ) = ( C / A ) ) |
| 23 | 13 16 22 | 3eqtrd | |- ( ( A e. NN /\ B e. NN /\ C e. CC ) -> ( ( B / A ) x. ( C / B ) ) = ( C / A ) ) |
| 24 | 23 | eleq1d | |- ( ( A e. NN /\ B e. NN /\ C e. CC ) -> ( ( ( B / A ) x. ( C / B ) ) e. NN <-> ( C / A ) e. NN ) ) |
| 25 | 1 24 | imbitrid | |- ( ( A e. NN /\ B e. NN /\ C e. CC ) -> ( ( ( B / A ) e. NN /\ ( C / B ) e. NN ) -> ( C / A ) e. NN ) ) |
| 26 | 25 | imp | |- ( ( ( A e. NN /\ B e. NN /\ C e. CC ) /\ ( ( B / A ) e. NN /\ ( C / B ) e. NN ) ) -> ( C / A ) e. NN ) |