This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap the numerators in the product of two ratios. (Contributed by NM, 3-May-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divmul24 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) x. ( B / D ) ) = ( ( A / D ) x. ( B / C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcom | |- ( ( C e. CC /\ D e. CC ) -> ( C x. D ) = ( D x. C ) ) |
|
| 2 | 1 | ad2ant2r | |- ( ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( C x. D ) = ( D x. C ) ) |
| 3 | 2 | adantl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( C x. D ) = ( D x. C ) ) |
| 4 | 3 | oveq2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A x. B ) / ( C x. D ) ) = ( ( A x. B ) / ( D x. C ) ) ) |
| 5 | divmuldiv | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) x. ( B / D ) ) = ( ( A x. B ) / ( C x. D ) ) ) |
|
| 6 | divmuldiv | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( D e. CC /\ D =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) ) -> ( ( A / D ) x. ( B / C ) ) = ( ( A x. B ) / ( D x. C ) ) ) |
|
| 7 | 6 | ancom2s | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / D ) x. ( B / C ) ) = ( ( A x. B ) / ( D x. C ) ) ) |
| 8 | 4 5 7 | 3eqtr4d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) x. ( B / D ) ) = ( ( A / D ) x. ( B / C ) ) ) |