This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitive property of divisibility: if A divides B and B divides C , then A divides C . Typically, C would be an integer, although the theorem holds for complex C . (Contributed by NM, 3-May-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nndivtr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ ) ∧ ( ( 𝐵 / 𝐴 ) ∈ ℕ ∧ ( 𝐶 / 𝐵 ) ∈ ℕ ) ) → ( 𝐶 / 𝐴 ) ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnmulcl | ⊢ ( ( ( 𝐵 / 𝐴 ) ∈ ℕ ∧ ( 𝐶 / 𝐵 ) ∈ ℕ ) → ( ( 𝐵 / 𝐴 ) · ( 𝐶 / 𝐵 ) ) ∈ ℕ ) | |
| 2 | nncn | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) | |
| 3 | 2 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
| 4 | simp3 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) | |
| 5 | nncn | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) | |
| 6 | nnne0 | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ≠ 0 ) | |
| 7 | 5 6 | jca | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
| 9 | nnne0 | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) | |
| 10 | 2 9 | jca | ⊢ ( 𝐵 ∈ ℕ → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 12 | divmul24 | ⊢ ( ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) ) → ( ( 𝐵 / 𝐴 ) · ( 𝐶 / 𝐵 ) ) = ( ( 𝐵 / 𝐵 ) · ( 𝐶 / 𝐴 ) ) ) | |
| 13 | 3 4 8 11 12 | syl22anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 / 𝐴 ) · ( 𝐶 / 𝐵 ) ) = ( ( 𝐵 / 𝐵 ) · ( 𝐶 / 𝐴 ) ) ) |
| 14 | 2 9 | dividd | ⊢ ( 𝐵 ∈ ℕ → ( 𝐵 / 𝐵 ) = 1 ) |
| 15 | 14 | oveq1d | ⊢ ( 𝐵 ∈ ℕ → ( ( 𝐵 / 𝐵 ) · ( 𝐶 / 𝐴 ) ) = ( 1 · ( 𝐶 / 𝐴 ) ) ) |
| 16 | 15 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 / 𝐵 ) · ( 𝐶 / 𝐴 ) ) = ( 1 · ( 𝐶 / 𝐴 ) ) ) |
| 17 | divcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐶 / 𝐴 ) ∈ ℂ ) | |
| 18 | 17 | 3expb | ⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( 𝐶 / 𝐴 ) ∈ ℂ ) |
| 19 | 7 18 | sylan2 | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℕ ) → ( 𝐶 / 𝐴 ) ∈ ℂ ) |
| 20 | 19 | ancoms | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 / 𝐴 ) ∈ ℂ ) |
| 21 | 20 | mullidd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℂ ) → ( 1 · ( 𝐶 / 𝐴 ) ) = ( 𝐶 / 𝐴 ) ) |
| 22 | 21 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ ) → ( 1 · ( 𝐶 / 𝐴 ) ) = ( 𝐶 / 𝐴 ) ) |
| 23 | 13 16 22 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 / 𝐴 ) · ( 𝐶 / 𝐵 ) ) = ( 𝐶 / 𝐴 ) ) |
| 24 | 23 | eleq1d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐵 / 𝐴 ) · ( 𝐶 / 𝐵 ) ) ∈ ℕ ↔ ( 𝐶 / 𝐴 ) ∈ ℕ ) ) |
| 25 | 1 24 | imbitrid | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐵 / 𝐴 ) ∈ ℕ ∧ ( 𝐶 / 𝐵 ) ∈ ℕ ) → ( 𝐶 / 𝐴 ) ∈ ℕ ) ) |
| 26 | 25 | imp | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ ) ∧ ( ( 𝐵 / 𝐴 ) ∈ ℕ ∧ ( 𝐶 / 𝐵 ) ∈ ℕ ) ) → ( 𝐶 / 𝐴 ) ∈ ℕ ) |