This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express " A divides B " for positive integers. (Contributed by NM, 3-Feb-2004) (Proof shortened by Mario Carneiro, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nndiv | |- ( ( A e. NN /\ B e. NN ) -> ( E. x e. NN ( A x. x ) = B <-> ( B / A ) e. NN ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | risset | |- ( ( B / A ) e. NN <-> E. x e. NN x = ( B / A ) ) |
|
| 2 | eqcom | |- ( x = ( B / A ) <-> ( B / A ) = x ) |
|
| 3 | nncn | |- ( B e. NN -> B e. CC ) |
|
| 4 | 3 | ad2antlr | |- ( ( ( A e. NN /\ B e. NN ) /\ x e. NN ) -> B e. CC ) |
| 5 | nncn | |- ( A e. NN -> A e. CC ) |
|
| 6 | 5 | ad2antrr | |- ( ( ( A e. NN /\ B e. NN ) /\ x e. NN ) -> A e. CC ) |
| 7 | nncn | |- ( x e. NN -> x e. CC ) |
|
| 8 | 7 | adantl | |- ( ( ( A e. NN /\ B e. NN ) /\ x e. NN ) -> x e. CC ) |
| 9 | nnne0 | |- ( A e. NN -> A =/= 0 ) |
|
| 10 | 9 | ad2antrr | |- ( ( ( A e. NN /\ B e. NN ) /\ x e. NN ) -> A =/= 0 ) |
| 11 | 4 6 8 10 | divmuld | |- ( ( ( A e. NN /\ B e. NN ) /\ x e. NN ) -> ( ( B / A ) = x <-> ( A x. x ) = B ) ) |
| 12 | 2 11 | bitrid | |- ( ( ( A e. NN /\ B e. NN ) /\ x e. NN ) -> ( x = ( B / A ) <-> ( A x. x ) = B ) ) |
| 13 | 12 | rexbidva | |- ( ( A e. NN /\ B e. NN ) -> ( E. x e. NN x = ( B / A ) <-> E. x e. NN ( A x. x ) = B ) ) |
| 14 | 1 13 | bitr2id | |- ( ( A e. NN /\ B e. NN ) -> ( E. x e. NN ( A x. x ) = B <-> ( B / A ) e. NN ) ) |