This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of addition. Proposition 8.4 of TakeutiZaring p. 58, limited to natural numbers, and its converse. (Contributed by NM, 7-Mar-1996) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnaord | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( A e. B <-> ( C +o A ) e. ( C +o B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnaordi | |- ( ( B e. _om /\ C e. _om ) -> ( A e. B -> ( C +o A ) e. ( C +o B ) ) ) |
|
| 2 | 1 | 3adant1 | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( A e. B -> ( C +o A ) e. ( C +o B ) ) ) |
| 3 | oveq2 | |- ( A = B -> ( C +o A ) = ( C +o B ) ) |
|
| 4 | 3 | a1i | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( A = B -> ( C +o A ) = ( C +o B ) ) ) |
| 5 | nnaordi | |- ( ( A e. _om /\ C e. _om ) -> ( B e. A -> ( C +o B ) e. ( C +o A ) ) ) |
|
| 6 | 5 | 3adant2 | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( B e. A -> ( C +o B ) e. ( C +o A ) ) ) |
| 7 | 4 6 | orim12d | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( ( A = B \/ B e. A ) -> ( ( C +o A ) = ( C +o B ) \/ ( C +o B ) e. ( C +o A ) ) ) ) |
| 8 | 7 | con3d | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( -. ( ( C +o A ) = ( C +o B ) \/ ( C +o B ) e. ( C +o A ) ) -> -. ( A = B \/ B e. A ) ) ) |
| 9 | df-3an | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) <-> ( ( A e. _om /\ B e. _om ) /\ C e. _om ) ) |
|
| 10 | ancom | |- ( ( ( A e. _om /\ B e. _om ) /\ C e. _om ) <-> ( C e. _om /\ ( A e. _om /\ B e. _om ) ) ) |
|
| 11 | anandi | |- ( ( C e. _om /\ ( A e. _om /\ B e. _om ) ) <-> ( ( C e. _om /\ A e. _om ) /\ ( C e. _om /\ B e. _om ) ) ) |
|
| 12 | 9 10 11 | 3bitri | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) <-> ( ( C e. _om /\ A e. _om ) /\ ( C e. _om /\ B e. _om ) ) ) |
| 13 | nnacl | |- ( ( C e. _om /\ A e. _om ) -> ( C +o A ) e. _om ) |
|
| 14 | nnord | |- ( ( C +o A ) e. _om -> Ord ( C +o A ) ) |
|
| 15 | 13 14 | syl | |- ( ( C e. _om /\ A e. _om ) -> Ord ( C +o A ) ) |
| 16 | nnacl | |- ( ( C e. _om /\ B e. _om ) -> ( C +o B ) e. _om ) |
|
| 17 | nnord | |- ( ( C +o B ) e. _om -> Ord ( C +o B ) ) |
|
| 18 | 16 17 | syl | |- ( ( C e. _om /\ B e. _om ) -> Ord ( C +o B ) ) |
| 19 | 15 18 | anim12i | |- ( ( ( C e. _om /\ A e. _om ) /\ ( C e. _om /\ B e. _om ) ) -> ( Ord ( C +o A ) /\ Ord ( C +o B ) ) ) |
| 20 | 12 19 | sylbi | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( Ord ( C +o A ) /\ Ord ( C +o B ) ) ) |
| 21 | ordtri2 | |- ( ( Ord ( C +o A ) /\ Ord ( C +o B ) ) -> ( ( C +o A ) e. ( C +o B ) <-> -. ( ( C +o A ) = ( C +o B ) \/ ( C +o B ) e. ( C +o A ) ) ) ) |
|
| 22 | 20 21 | syl | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( ( C +o A ) e. ( C +o B ) <-> -. ( ( C +o A ) = ( C +o B ) \/ ( C +o B ) e. ( C +o A ) ) ) ) |
| 23 | nnord | |- ( A e. _om -> Ord A ) |
|
| 24 | nnord | |- ( B e. _om -> Ord B ) |
|
| 25 | 23 24 | anim12i | |- ( ( A e. _om /\ B e. _om ) -> ( Ord A /\ Ord B ) ) |
| 26 | 25 | 3adant3 | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( Ord A /\ Ord B ) ) |
| 27 | ordtri2 | |- ( ( Ord A /\ Ord B ) -> ( A e. B <-> -. ( A = B \/ B e. A ) ) ) |
|
| 28 | 26 27 | syl | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( A e. B <-> -. ( A = B \/ B e. A ) ) ) |
| 29 | 8 22 28 | 3imtr4d | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( ( C +o A ) e. ( C +o B ) -> A e. B ) ) |
| 30 | 2 29 | impbid | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( A e. B <-> ( C +o A ) e. ( C +o B ) ) ) |