This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is at most one left additive inverse for natural number addition. (Contributed by Scott Fenton, 17-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnasmo | |- ( A e. _om -> E* x e. _om ( A +o x ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3 | |- ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> ( A +o x ) = ( A +o y ) ) |
|
| 2 | nnacan | |- ( ( A e. _om /\ x e. _om /\ y e. _om ) -> ( ( A +o x ) = ( A +o y ) <-> x = y ) ) |
|
| 3 | 1 2 | imbitrid | |- ( ( A e. _om /\ x e. _om /\ y e. _om ) -> ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> x = y ) ) |
| 4 | 3 | 3expb | |- ( ( A e. _om /\ ( x e. _om /\ y e. _om ) ) -> ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> x = y ) ) |
| 5 | 4 | ralrimivva | |- ( A e. _om -> A. x e. _om A. y e. _om ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> x = y ) ) |
| 6 | oveq2 | |- ( x = y -> ( A +o x ) = ( A +o y ) ) |
|
| 7 | 6 | eqeq1d | |- ( x = y -> ( ( A +o x ) = B <-> ( A +o y ) = B ) ) |
| 8 | 7 | rmo4 | |- ( E* x e. _om ( A +o x ) = B <-> A. x e. _om A. y e. _om ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> x = y ) ) |
| 9 | 5 8 | sylibr | |- ( A e. _om -> E* x e. _om ( A +o x ) = B ) |