This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure law for addition of natural numbers. Exercise 1 of TakeutiZaring p. 62 and its converse. (Contributed by NM, 12-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnarcl | |- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) e. _om <-> ( A e. _om /\ B e. _om ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oaword1 | |- ( ( A e. On /\ B e. On ) -> A C_ ( A +o B ) ) |
|
| 2 | eloni | |- ( A e. On -> Ord A ) |
|
| 3 | ordom | |- Ord _om |
|
| 4 | ordtr2 | |- ( ( Ord A /\ Ord _om ) -> ( ( A C_ ( A +o B ) /\ ( A +o B ) e. _om ) -> A e. _om ) ) |
|
| 5 | 2 3 4 | sylancl | |- ( A e. On -> ( ( A C_ ( A +o B ) /\ ( A +o B ) e. _om ) -> A e. _om ) ) |
| 6 | 5 | expd | |- ( A e. On -> ( A C_ ( A +o B ) -> ( ( A +o B ) e. _om -> A e. _om ) ) ) |
| 7 | 6 | adantr | |- ( ( A e. On /\ B e. On ) -> ( A C_ ( A +o B ) -> ( ( A +o B ) e. _om -> A e. _om ) ) ) |
| 8 | 1 7 | mpd | |- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) e. _om -> A e. _om ) ) |
| 9 | oaword2 | |- ( ( B e. On /\ A e. On ) -> B C_ ( A +o B ) ) |
|
| 10 | 9 | ancoms | |- ( ( A e. On /\ B e. On ) -> B C_ ( A +o B ) ) |
| 11 | eloni | |- ( B e. On -> Ord B ) |
|
| 12 | ordtr2 | |- ( ( Ord B /\ Ord _om ) -> ( ( B C_ ( A +o B ) /\ ( A +o B ) e. _om ) -> B e. _om ) ) |
|
| 13 | 11 3 12 | sylancl | |- ( B e. On -> ( ( B C_ ( A +o B ) /\ ( A +o B ) e. _om ) -> B e. _om ) ) |
| 14 | 13 | expd | |- ( B e. On -> ( B C_ ( A +o B ) -> ( ( A +o B ) e. _om -> B e. _om ) ) ) |
| 15 | 14 | adantl | |- ( ( A e. On /\ B e. On ) -> ( B C_ ( A +o B ) -> ( ( A +o B ) e. _om -> B e. _om ) ) ) |
| 16 | 10 15 | mpd | |- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) e. _om -> B e. _om ) ) |
| 17 | 8 16 | jcad | |- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) e. _om -> ( A e. _om /\ B e. _om ) ) ) |
| 18 | nnacl | |- ( ( A e. _om /\ B e. _om ) -> ( A +o B ) e. _om ) |
|
| 19 | 17 18 | impbid1 | |- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) e. _om <-> ( A e. _om /\ B e. _om ) ) ) |