This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure law for addition of natural numbers. Exercise 1 of TakeutiZaring p. 62 and its converse. (Contributed by NM, 12-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnarcl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) ∈ ω ↔ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oaword1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ⊆ ( 𝐴 +o 𝐵 ) ) | |
| 2 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 3 | ordom | ⊢ Ord ω | |
| 4 | ordtr2 | ⊢ ( ( Ord 𝐴 ∧ Ord ω ) → ( ( 𝐴 ⊆ ( 𝐴 +o 𝐵 ) ∧ ( 𝐴 +o 𝐵 ) ∈ ω ) → 𝐴 ∈ ω ) ) | |
| 5 | 2 3 4 | sylancl | ⊢ ( 𝐴 ∈ On → ( ( 𝐴 ⊆ ( 𝐴 +o 𝐵 ) ∧ ( 𝐴 +o 𝐵 ) ∈ ω ) → 𝐴 ∈ ω ) ) |
| 6 | 5 | expd | ⊢ ( 𝐴 ∈ On → ( 𝐴 ⊆ ( 𝐴 +o 𝐵 ) → ( ( 𝐴 +o 𝐵 ) ∈ ω → 𝐴 ∈ ω ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ ( 𝐴 +o 𝐵 ) → ( ( 𝐴 +o 𝐵 ) ∈ ω → 𝐴 ∈ ω ) ) ) |
| 8 | 1 7 | mpd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) ∈ ω → 𝐴 ∈ ω ) ) |
| 9 | oaword2 | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → 𝐵 ⊆ ( 𝐴 +o 𝐵 ) ) | |
| 10 | 9 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐵 ⊆ ( 𝐴 +o 𝐵 ) ) |
| 11 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 12 | ordtr2 | ⊢ ( ( Ord 𝐵 ∧ Ord ω ) → ( ( 𝐵 ⊆ ( 𝐴 +o 𝐵 ) ∧ ( 𝐴 +o 𝐵 ) ∈ ω ) → 𝐵 ∈ ω ) ) | |
| 13 | 11 3 12 | sylancl | ⊢ ( 𝐵 ∈ On → ( ( 𝐵 ⊆ ( 𝐴 +o 𝐵 ) ∧ ( 𝐴 +o 𝐵 ) ∈ ω ) → 𝐵 ∈ ω ) ) |
| 14 | 13 | expd | ⊢ ( 𝐵 ∈ On → ( 𝐵 ⊆ ( 𝐴 +o 𝐵 ) → ( ( 𝐴 +o 𝐵 ) ∈ ω → 𝐵 ∈ ω ) ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ ( 𝐴 +o 𝐵 ) → ( ( 𝐴 +o 𝐵 ) ∈ ω → 𝐵 ∈ ω ) ) ) |
| 16 | 10 15 | mpd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) ∈ ω → 𝐵 ∈ ω ) ) |
| 17 | 8 16 | jcad | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) ∈ ω → ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ) |
| 18 | nnacl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) ∈ ω ) | |
| 19 | 17 18 | impbid1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) ∈ ω ↔ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ) |