This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of addition. Proposition 8.4 of TakeutiZaring p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnaordi | |- ( ( B e. _om /\ C e. _om ) -> ( A e. B -> ( C +o A ) e. ( C +o B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn | |- ( ( A e. B /\ B e. _om ) -> A e. _om ) |
|
| 2 | 1 | ancoms | |- ( ( B e. _om /\ A e. B ) -> A e. _om ) |
| 3 | 2 | adantll | |- ( ( ( C e. _om /\ B e. _om ) /\ A e. B ) -> A e. _om ) |
| 4 | nnord | |- ( B e. _om -> Ord B ) |
|
| 5 | ordsucss | |- ( Ord B -> ( A e. B -> suc A C_ B ) ) |
|
| 6 | 4 5 | syl | |- ( B e. _om -> ( A e. B -> suc A C_ B ) ) |
| 7 | 6 | ad2antlr | |- ( ( ( C e. _om /\ B e. _om ) /\ A e. _om ) -> ( A e. B -> suc A C_ B ) ) |
| 8 | peano2b | |- ( A e. _om <-> suc A e. _om ) |
|
| 9 | oveq2 | |- ( x = suc A -> ( C +o x ) = ( C +o suc A ) ) |
|
| 10 | 9 | sseq2d | |- ( x = suc A -> ( ( C +o suc A ) C_ ( C +o x ) <-> ( C +o suc A ) C_ ( C +o suc A ) ) ) |
| 11 | 10 | imbi2d | |- ( x = suc A -> ( ( C e. _om -> ( C +o suc A ) C_ ( C +o x ) ) <-> ( C e. _om -> ( C +o suc A ) C_ ( C +o suc A ) ) ) ) |
| 12 | oveq2 | |- ( x = y -> ( C +o x ) = ( C +o y ) ) |
|
| 13 | 12 | sseq2d | |- ( x = y -> ( ( C +o suc A ) C_ ( C +o x ) <-> ( C +o suc A ) C_ ( C +o y ) ) ) |
| 14 | 13 | imbi2d | |- ( x = y -> ( ( C e. _om -> ( C +o suc A ) C_ ( C +o x ) ) <-> ( C e. _om -> ( C +o suc A ) C_ ( C +o y ) ) ) ) |
| 15 | oveq2 | |- ( x = suc y -> ( C +o x ) = ( C +o suc y ) ) |
|
| 16 | 15 | sseq2d | |- ( x = suc y -> ( ( C +o suc A ) C_ ( C +o x ) <-> ( C +o suc A ) C_ ( C +o suc y ) ) ) |
| 17 | 16 | imbi2d | |- ( x = suc y -> ( ( C e. _om -> ( C +o suc A ) C_ ( C +o x ) ) <-> ( C e. _om -> ( C +o suc A ) C_ ( C +o suc y ) ) ) ) |
| 18 | oveq2 | |- ( x = B -> ( C +o x ) = ( C +o B ) ) |
|
| 19 | 18 | sseq2d | |- ( x = B -> ( ( C +o suc A ) C_ ( C +o x ) <-> ( C +o suc A ) C_ ( C +o B ) ) ) |
| 20 | 19 | imbi2d | |- ( x = B -> ( ( C e. _om -> ( C +o suc A ) C_ ( C +o x ) ) <-> ( C e. _om -> ( C +o suc A ) C_ ( C +o B ) ) ) ) |
| 21 | ssid | |- ( C +o suc A ) C_ ( C +o suc A ) |
|
| 22 | 21 | 2a1i | |- ( suc A e. _om -> ( C e. _om -> ( C +o suc A ) C_ ( C +o suc A ) ) ) |
| 23 | sssucid | |- ( C +o y ) C_ suc ( C +o y ) |
|
| 24 | sstr2 | |- ( ( C +o suc A ) C_ ( C +o y ) -> ( ( C +o y ) C_ suc ( C +o y ) -> ( C +o suc A ) C_ suc ( C +o y ) ) ) |
|
| 25 | 23 24 | mpi | |- ( ( C +o suc A ) C_ ( C +o y ) -> ( C +o suc A ) C_ suc ( C +o y ) ) |
| 26 | nnasuc | |- ( ( C e. _om /\ y e. _om ) -> ( C +o suc y ) = suc ( C +o y ) ) |
|
| 27 | 26 | ancoms | |- ( ( y e. _om /\ C e. _om ) -> ( C +o suc y ) = suc ( C +o y ) ) |
| 28 | 27 | sseq2d | |- ( ( y e. _om /\ C e. _om ) -> ( ( C +o suc A ) C_ ( C +o suc y ) <-> ( C +o suc A ) C_ suc ( C +o y ) ) ) |
| 29 | 25 28 | imbitrrid | |- ( ( y e. _om /\ C e. _om ) -> ( ( C +o suc A ) C_ ( C +o y ) -> ( C +o suc A ) C_ ( C +o suc y ) ) ) |
| 30 | 29 | ex | |- ( y e. _om -> ( C e. _om -> ( ( C +o suc A ) C_ ( C +o y ) -> ( C +o suc A ) C_ ( C +o suc y ) ) ) ) |
| 31 | 30 | ad2antrr | |- ( ( ( y e. _om /\ suc A e. _om ) /\ suc A C_ y ) -> ( C e. _om -> ( ( C +o suc A ) C_ ( C +o y ) -> ( C +o suc A ) C_ ( C +o suc y ) ) ) ) |
| 32 | 31 | a2d | |- ( ( ( y e. _om /\ suc A e. _om ) /\ suc A C_ y ) -> ( ( C e. _om -> ( C +o suc A ) C_ ( C +o y ) ) -> ( C e. _om -> ( C +o suc A ) C_ ( C +o suc y ) ) ) ) |
| 33 | 11 14 17 20 22 32 | findsg | |- ( ( ( B e. _om /\ suc A e. _om ) /\ suc A C_ B ) -> ( C e. _om -> ( C +o suc A ) C_ ( C +o B ) ) ) |
| 34 | 33 | exp31 | |- ( B e. _om -> ( suc A e. _om -> ( suc A C_ B -> ( C e. _om -> ( C +o suc A ) C_ ( C +o B ) ) ) ) ) |
| 35 | 8 34 | biimtrid | |- ( B e. _om -> ( A e. _om -> ( suc A C_ B -> ( C e. _om -> ( C +o suc A ) C_ ( C +o B ) ) ) ) ) |
| 36 | 35 | com4r | |- ( C e. _om -> ( B e. _om -> ( A e. _om -> ( suc A C_ B -> ( C +o suc A ) C_ ( C +o B ) ) ) ) ) |
| 37 | 36 | imp31 | |- ( ( ( C e. _om /\ B e. _om ) /\ A e. _om ) -> ( suc A C_ B -> ( C +o suc A ) C_ ( C +o B ) ) ) |
| 38 | nnasuc | |- ( ( C e. _om /\ A e. _om ) -> ( C +o suc A ) = suc ( C +o A ) ) |
|
| 39 | 38 | sseq1d | |- ( ( C e. _om /\ A e. _om ) -> ( ( C +o suc A ) C_ ( C +o B ) <-> suc ( C +o A ) C_ ( C +o B ) ) ) |
| 40 | ovex | |- ( C +o A ) e. _V |
|
| 41 | sucssel | |- ( ( C +o A ) e. _V -> ( suc ( C +o A ) C_ ( C +o B ) -> ( C +o A ) e. ( C +o B ) ) ) |
|
| 42 | 40 41 | ax-mp | |- ( suc ( C +o A ) C_ ( C +o B ) -> ( C +o A ) e. ( C +o B ) ) |
| 43 | 39 42 | biimtrdi | |- ( ( C e. _om /\ A e. _om ) -> ( ( C +o suc A ) C_ ( C +o B ) -> ( C +o A ) e. ( C +o B ) ) ) |
| 44 | 43 | adantlr | |- ( ( ( C e. _om /\ B e. _om ) /\ A e. _om ) -> ( ( C +o suc A ) C_ ( C +o B ) -> ( C +o A ) e. ( C +o B ) ) ) |
| 45 | 7 37 44 | 3syld | |- ( ( ( C e. _om /\ B e. _om ) /\ A e. _om ) -> ( A e. B -> ( C +o A ) e. ( C +o B ) ) ) |
| 46 | 45 | imp | |- ( ( ( ( C e. _om /\ B e. _om ) /\ A e. _om ) /\ A e. B ) -> ( C +o A ) e. ( C +o B ) ) |
| 47 | 46 | an32s | |- ( ( ( ( C e. _om /\ B e. _om ) /\ A e. B ) /\ A e. _om ) -> ( C +o A ) e. ( C +o B ) ) |
| 48 | 3 47 | mpdan | |- ( ( ( C e. _om /\ B e. _om ) /\ A e. B ) -> ( C +o A ) e. ( C +o B ) ) |
| 49 | 48 | ex | |- ( ( C e. _om /\ B e. _om ) -> ( A e. B -> ( C +o A ) e. ( C +o B ) ) ) |
| 50 | 49 | ancoms | |- ( ( B e. _om /\ C e. _om ) -> ( A e. B -> ( C +o A ) e. ( C +o B ) ) ) |