This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted mapping is a mapping. (Contributed by Stefan O'Rear, 9-Oct-2014) (Revised by Mario Carneiro, 5-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elmapssres | |- ( ( A e. ( B ^m C ) /\ D C_ C ) -> ( A |` D ) e. ( B ^m D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi | |- ( A e. ( B ^m C ) -> A : C --> B ) |
|
| 2 | fssres | |- ( ( A : C --> B /\ D C_ C ) -> ( A |` D ) : D --> B ) |
|
| 3 | 1 2 | sylan | |- ( ( A e. ( B ^m C ) /\ D C_ C ) -> ( A |` D ) : D --> B ) |
| 4 | elmapex | |- ( A e. ( B ^m C ) -> ( B e. _V /\ C e. _V ) ) |
|
| 5 | 4 | simpld | |- ( A e. ( B ^m C ) -> B e. _V ) |
| 6 | 5 | adantr | |- ( ( A e. ( B ^m C ) /\ D C_ C ) -> B e. _V ) |
| 7 | 4 | simprd | |- ( A e. ( B ^m C ) -> C e. _V ) |
| 8 | ssexg | |- ( ( D C_ C /\ C e. _V ) -> D e. _V ) |
|
| 9 | 8 | ancoms | |- ( ( C e. _V /\ D C_ C ) -> D e. _V ) |
| 10 | 7 9 | sylan | |- ( ( A e. ( B ^m C ) /\ D C_ C ) -> D e. _V ) |
| 11 | 6 10 | elmapd | |- ( ( A e. ( B ^m C ) /\ D C_ C ) -> ( ( A |` D ) e. ( B ^m D ) <-> ( A |` D ) : D --> B ) ) |
| 12 | 3 11 | mpbird | |- ( ( A e. ( B ^m C ) /\ D C_ C ) -> ( A |` D ) e. ( B ^m D ) ) |