This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nn0gsumfz.b | |- B = ( Base ` G ) |
|
| nn0gsumfz.0 | |- .0. = ( 0g ` G ) |
||
| nn0gsumfz.g | |- ( ph -> G e. CMnd ) |
||
| nn0gsumfz.f | |- ( ph -> F e. ( B ^m NN0 ) ) |
||
| nn0gsumfz.y | |- ( ph -> F finSupp .0. ) |
||
| Assertion | nn0gsumfz0 | |- ( ph -> E. s e. NN0 E. f e. ( B ^m ( 0 ... s ) ) ( G gsum F ) = ( G gsum f ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0gsumfz.b | |- B = ( Base ` G ) |
|
| 2 | nn0gsumfz.0 | |- .0. = ( 0g ` G ) |
|
| 3 | nn0gsumfz.g | |- ( ph -> G e. CMnd ) |
|
| 4 | nn0gsumfz.f | |- ( ph -> F e. ( B ^m NN0 ) ) |
|
| 5 | nn0gsumfz.y | |- ( ph -> F finSupp .0. ) |
|
| 6 | 1 2 3 4 5 | nn0gsumfz | |- ( ph -> E. s e. NN0 E. f e. ( B ^m ( 0 ... s ) ) ( f = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum f ) ) ) |
| 7 | simp3 | |- ( ( f = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum f ) ) -> ( G gsum F ) = ( G gsum f ) ) |
|
| 8 | 7 | reximi | |- ( E. f e. ( B ^m ( 0 ... s ) ) ( f = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum f ) ) -> E. f e. ( B ^m ( 0 ... s ) ) ( G gsum F ) = ( G gsum f ) ) |
| 9 | 8 | reximi | |- ( E. s e. NN0 E. f e. ( B ^m ( 0 ... s ) ) ( f = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum f ) ) -> E. s e. NN0 E. f e. ( B ^m ( 0 ... s ) ) ( G gsum F ) = ( G gsum f ) ) |
| 10 | 6 9 | syl | |- ( ph -> E. s e. NN0 E. f e. ( B ^m ( 0 ... s ) ) ( G gsum F ) = ( G gsum f ) ) |