This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The proportion of one binomial coefficient to another with N decreased by 1. (Contributed by Thierry Arnoux, 9-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcm1n | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( ( N - 1 ) _C K ) / ( N _C K ) ) = ( ( N - K ) / N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bcp1n | |- ( K e. ( 0 ... ( N - 1 ) ) -> ( ( ( N - 1 ) + 1 ) _C K ) = ( ( ( N - 1 ) _C K ) x. ( ( ( N - 1 ) + 1 ) / ( ( ( N - 1 ) + 1 ) - K ) ) ) ) |
|
| 2 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 3 | 2 | zcnd | |- ( N e. NN -> N e. CC ) |
| 4 | 3 | adantl | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> N e. CC ) |
| 5 | 1cnd | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> 1 e. CC ) |
|
| 6 | 4 5 | npcand | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( N - 1 ) + 1 ) = N ) |
| 7 | 6 | oveq1d | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( ( N - 1 ) + 1 ) _C K ) = ( N _C K ) ) |
| 8 | 6 | oveq1d | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( ( N - 1 ) + 1 ) - K ) = ( N - K ) ) |
| 9 | 6 8 | oveq12d | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( ( N - 1 ) + 1 ) / ( ( ( N - 1 ) + 1 ) - K ) ) = ( N / ( N - K ) ) ) |
| 10 | 9 | oveq2d | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( ( N - 1 ) _C K ) x. ( ( ( N - 1 ) + 1 ) / ( ( ( N - 1 ) + 1 ) - K ) ) ) = ( ( ( N - 1 ) _C K ) x. ( N / ( N - K ) ) ) ) |
| 11 | 7 10 | eqeq12d | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( ( ( N - 1 ) + 1 ) _C K ) = ( ( ( N - 1 ) _C K ) x. ( ( ( N - 1 ) + 1 ) / ( ( ( N - 1 ) + 1 ) - K ) ) ) <-> ( N _C K ) = ( ( ( N - 1 ) _C K ) x. ( N / ( N - K ) ) ) ) ) |
| 12 | 1 11 | imbitrid | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( K e. ( 0 ... ( N - 1 ) ) -> ( N _C K ) = ( ( ( N - 1 ) _C K ) x. ( N / ( N - K ) ) ) ) ) |
| 13 | 12 | 3impia | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN /\ K e. ( 0 ... ( N - 1 ) ) ) -> ( N _C K ) = ( ( ( N - 1 ) _C K ) x. ( N / ( N - K ) ) ) ) |
| 14 | 13 | 3anidm13 | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( N _C K ) = ( ( ( N - 1 ) _C K ) x. ( N / ( N - K ) ) ) ) |
| 15 | elfznn0 | |- ( K e. ( 0 ... ( N - 1 ) ) -> K e. NN0 ) |
|
| 16 | 15 | adantr | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> K e. NN0 ) |
| 17 | simpr | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> N e. NN ) |
|
| 18 | 17 | nnnn0d | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> N e. NN0 ) |
| 19 | elfzelz | |- ( K e. ( 0 ... ( N - 1 ) ) -> K e. ZZ ) |
|
| 20 | 19 | adantr | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> K e. ZZ ) |
| 21 | 20 | zred | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> K e. RR ) |
| 22 | 2 | adantl | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> N e. ZZ ) |
| 23 | 22 | zred | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> N e. RR ) |
| 24 | elfzle2 | |- ( K e. ( 0 ... ( N - 1 ) ) -> K <_ ( N - 1 ) ) |
|
| 25 | 24 | adantr | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> K <_ ( N - 1 ) ) |
| 26 | zltlem1 | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( K < N <-> K <_ ( N - 1 ) ) ) |
|
| 27 | 19 2 26 | syl2an | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( K < N <-> K <_ ( N - 1 ) ) ) |
| 28 | 25 27 | mpbird | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> K < N ) |
| 29 | 21 23 28 | ltled | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> K <_ N ) |
| 30 | elfz2nn0 | |- ( K e. ( 0 ... N ) <-> ( K e. NN0 /\ N e. NN0 /\ K <_ N ) ) |
|
| 31 | 16 18 29 30 | syl3anbrc | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> K e. ( 0 ... N ) ) |
| 32 | bcrpcl | |- ( K e. ( 0 ... N ) -> ( N _C K ) e. RR+ ) |
|
| 33 | 31 32 | syl | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( N _C K ) e. RR+ ) |
| 34 | 33 | rpcnd | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( N _C K ) e. CC ) |
| 35 | 19 | zcnd | |- ( K e. ( 0 ... ( N - 1 ) ) -> K e. CC ) |
| 36 | 35 | adantr | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> K e. CC ) |
| 37 | 4 36 | subcld | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( N - K ) e. CC ) |
| 38 | 36 4 | negsubdi2d | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> -u ( K - N ) = ( N - K ) ) |
| 39 | 21 23 | resubcld | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( K - N ) e. RR ) |
| 40 | 39 | recnd | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( K - N ) e. CC ) |
| 41 | 4 | addlidd | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( 0 + N ) = N ) |
| 42 | 28 41 | breqtrrd | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> K < ( 0 + N ) ) |
| 43 | 0red | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> 0 e. RR ) |
|
| 44 | 21 23 43 | ltsubaddd | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( K - N ) < 0 <-> K < ( 0 + N ) ) ) |
| 45 | 42 44 | mpbird | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( K - N ) < 0 ) |
| 46 | 45 | lt0ne0d | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( K - N ) =/= 0 ) |
| 47 | 40 46 | negne0d | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> -u ( K - N ) =/= 0 ) |
| 48 | 38 47 | eqnetrrd | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( N - K ) =/= 0 ) |
| 49 | 4 37 48 | divcld | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( N / ( N - K ) ) e. CC ) |
| 50 | bcrpcl | |- ( K e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) _C K ) e. RR+ ) |
|
| 51 | 50 | adantr | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( N - 1 ) _C K ) e. RR+ ) |
| 52 | 51 | rpcnne0d | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( ( N - 1 ) _C K ) e. CC /\ ( ( N - 1 ) _C K ) =/= 0 ) ) |
| 53 | divmul2 | |- ( ( ( N _C K ) e. CC /\ ( N / ( N - K ) ) e. CC /\ ( ( ( N - 1 ) _C K ) e. CC /\ ( ( N - 1 ) _C K ) =/= 0 ) ) -> ( ( ( N _C K ) / ( ( N - 1 ) _C K ) ) = ( N / ( N - K ) ) <-> ( N _C K ) = ( ( ( N - 1 ) _C K ) x. ( N / ( N - K ) ) ) ) ) |
|
| 54 | 34 49 52 53 | syl3anc | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( ( N _C K ) / ( ( N - 1 ) _C K ) ) = ( N / ( N - K ) ) <-> ( N _C K ) = ( ( ( N - 1 ) _C K ) x. ( N / ( N - K ) ) ) ) ) |
| 55 | 14 54 | mpbird | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( N _C K ) / ( ( N - 1 ) _C K ) ) = ( N / ( N - K ) ) ) |
| 56 | 55 | oveq2d | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( 1 / ( ( N _C K ) / ( ( N - 1 ) _C K ) ) ) = ( 1 / ( N / ( N - K ) ) ) ) |
| 57 | 51 | rpcnd | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( N - 1 ) _C K ) e. CC ) |
| 58 | bccl2 | |- ( K e. ( 0 ... N ) -> ( N _C K ) e. NN ) |
|
| 59 | 31 58 | syl | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( N _C K ) e. NN ) |
| 60 | 59 | nnne0d | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( N _C K ) =/= 0 ) |
| 61 | bccl2 | |- ( K e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) _C K ) e. NN ) |
|
| 62 | 61 | nnne0d | |- ( K e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) _C K ) =/= 0 ) |
| 63 | 62 | adantr | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( N - 1 ) _C K ) =/= 0 ) |
| 64 | 34 57 60 63 | recdivd | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( 1 / ( ( N _C K ) / ( ( N - 1 ) _C K ) ) ) = ( ( ( N - 1 ) _C K ) / ( N _C K ) ) ) |
| 65 | 17 | nnne0d | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> N =/= 0 ) |
| 66 | 4 37 65 48 | recdivd | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( 1 / ( N / ( N - K ) ) ) = ( ( N - K ) / N ) ) |
| 67 | 56 64 66 | 3eqtr3d | |- ( ( K e. ( 0 ... ( N - 1 ) ) /\ N e. NN ) -> ( ( ( N - 1 ) _C K ) / ( N _C K ) ) = ( ( N - K ) / N ) ) |