This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Upper set of the nonnegative integers. (Contributed by Thierry Arnoux, 25-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0diffz0 | ⊢ ( 𝑁 ∈ ℕ0 → ( ℕ0 ∖ ( 0 ... 𝑁 ) ) = ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 2 | peano2nn0 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) | |
| 3 | 2 1 | eleqtrdi | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 4 | fzouzsplit | ⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 0 ) → ( ℤ≥ ‘ 0 ) = ( ( 0 ..^ ( 𝑁 + 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( ℤ≥ ‘ 0 ) = ( ( 0 ..^ ( 𝑁 + 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 6 | 1 5 | eqtrid | ⊢ ( 𝑁 ∈ ℕ0 → ℕ0 = ( ( 0 ..^ ( 𝑁 + 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 7 | 6 | difeq1d | ⊢ ( 𝑁 ∈ ℕ0 → ( ℕ0 ∖ ( 0 ... 𝑁 ) ) = ( ( ( 0 ..^ ( 𝑁 + 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∖ ( 0 ... 𝑁 ) ) ) |
| 8 | uncom | ⊢ ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ∪ ( 0 ... 𝑁 ) ) = ( ( 0 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) | |
| 9 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 10 | fzval3 | ⊢ ( 𝑁 ∈ ℤ → ( 0 ... 𝑁 ) = ( 0 ..^ ( 𝑁 + 1 ) ) ) | |
| 11 | 9 10 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( 0 ... 𝑁 ) = ( 0 ..^ ( 𝑁 + 1 ) ) ) |
| 12 | 11 | uneq1d | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 0 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = ( ( 0 ..^ ( 𝑁 + 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 13 | 8 12 | eqtrid | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ∪ ( 0 ... 𝑁 ) ) = ( ( 0 ..^ ( 𝑁 + 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 14 | 13 | difeq1d | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ∪ ( 0 ... 𝑁 ) ) ∖ ( 0 ... 𝑁 ) ) = ( ( ( 0 ..^ ( 𝑁 + 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∖ ( 0 ... 𝑁 ) ) ) |
| 15 | 11 | ineq2d | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ∩ ( 0 ... 𝑁 ) ) = ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ∩ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) |
| 16 | fzouzdisj | ⊢ ( ( 0 ..^ ( 𝑁 + 1 ) ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = ∅ | |
| 17 | 16 | ineqcomi | ⊢ ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ∩ ( 0 ..^ ( 𝑁 + 1 ) ) ) = ∅ |
| 18 | 15 17 | eqtrdi | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ∩ ( 0 ... 𝑁 ) ) = ∅ ) |
| 19 | undif5 | ⊢ ( ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ∩ ( 0 ... 𝑁 ) ) = ∅ → ( ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ∪ ( 0 ... 𝑁 ) ) ∖ ( 0 ... 𝑁 ) ) = ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) | |
| 20 | 18 19 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ∪ ( 0 ... 𝑁 ) ) ∖ ( 0 ... 𝑁 ) ) = ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |
| 21 | 7 14 20 | 3eqtr2d | ⊢ ( 𝑁 ∈ ℕ0 → ( ℕ0 ∖ ( 0 ... 𝑁 ) ) = ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |