This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square of the norm is the norm of an inner product in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmsq.v | |- V = ( Base ` W ) |
|
| nmsq.h | |- ., = ( .i ` W ) |
||
| nmsq.n | |- N = ( norm ` W ) |
||
| Assertion | cphnm | |- ( ( W e. CPreHil /\ A e. V ) -> ( N ` A ) = ( sqrt ` ( A ., A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmsq.v | |- V = ( Base ` W ) |
|
| 2 | nmsq.h | |- ., = ( .i ` W ) |
|
| 3 | nmsq.n | |- N = ( norm ` W ) |
|
| 4 | 1 2 3 | cphnmfval | |- ( W e. CPreHil -> N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) |
| 5 | 4 | fveq1d | |- ( W e. CPreHil -> ( N ` A ) = ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` A ) ) |
| 6 | oveq12 | |- ( ( x = A /\ x = A ) -> ( x ., x ) = ( A ., A ) ) |
|
| 7 | 6 | anidms | |- ( x = A -> ( x ., x ) = ( A ., A ) ) |
| 8 | 7 | fveq2d | |- ( x = A -> ( sqrt ` ( x ., x ) ) = ( sqrt ` ( A ., A ) ) ) |
| 9 | eqid | |- ( x e. V |-> ( sqrt ` ( x ., x ) ) ) = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) |
|
| 10 | fvex | |- ( sqrt ` ( A ., A ) ) e. _V |
|
| 11 | 8 9 10 | fvmpt | |- ( A e. V -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` A ) = ( sqrt ` ( A ., A ) ) ) |
| 12 | 5 11 | sylan9eq | |- ( ( W e. CPreHil /\ A e. V ) -> ( N ` A ) = ( sqrt ` ( A ., A ) ) ) |