This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of an operator is either real or plus infinity. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoxr.1 | |- X = ( BaseSet ` U ) |
|
| nmoxr.2 | |- Y = ( BaseSet ` W ) |
||
| nmoxr.3 | |- N = ( U normOpOLD W ) |
||
| Assertion | nmorepnf | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) e. RR <-> ( N ` T ) =/= +oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoxr.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nmoxr.2 | |- Y = ( BaseSet ` W ) |
|
| 3 | nmoxr.3 | |- N = ( U normOpOLD W ) |
|
| 4 | eqid | |- ( normCV ` W ) = ( normCV ` W ) |
|
| 5 | 2 4 | nmosetre | |- ( ( W e. NrmCVec /\ T : X --> Y ) -> { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } C_ RR ) |
| 6 | eqid | |- ( 0vec ` U ) = ( 0vec ` U ) |
|
| 7 | eqid | |- ( normCV ` U ) = ( normCV ` U ) |
|
| 8 | 1 6 7 | nmosetn0 | |- ( U e. NrmCVec -> ( ( normCV ` W ) ` ( T ` ( 0vec ` U ) ) ) e. { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } ) |
| 9 | 8 | ne0d | |- ( U e. NrmCVec -> { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } =/= (/) ) |
| 10 | supxrre2 | |- ( ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } C_ RR /\ { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } =/= (/) ) -> ( sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) e. RR <-> sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) =/= +oo ) ) |
|
| 11 | 5 9 10 | syl2anr | |- ( ( U e. NrmCVec /\ ( W e. NrmCVec /\ T : X --> Y ) ) -> ( sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) e. RR <-> sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) =/= +oo ) ) |
| 12 | 11 | 3impb | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) e. RR <-> sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) =/= +oo ) ) |
| 13 | 1 2 7 4 3 | nmooval | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( N ` T ) = sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) ) |
| 14 | 13 | eleq1d | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) e. RR <-> sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) e. RR ) ) |
| 15 | 13 | neeq1d | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) =/= +oo <-> sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) =/= +oo ) ) |
| 16 | 12 14 15 | 3bitr4d | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) e. RR <-> ( N ` T ) =/= +oo ) ) |