This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of any operator is real iff it is less than plus infinity. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoxr.1 | |- X = ( BaseSet ` U ) |
|
| nmoxr.2 | |- Y = ( BaseSet ` W ) |
||
| nmoxr.3 | |- N = ( U normOpOLD W ) |
||
| Assertion | nmoreltpnf | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) e. RR <-> ( N ` T ) < +oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoxr.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nmoxr.2 | |- Y = ( BaseSet ` W ) |
|
| 3 | nmoxr.3 | |- N = ( U normOpOLD W ) |
|
| 4 | 1 2 3 | nmorepnf | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) e. RR <-> ( N ` T ) =/= +oo ) ) |
| 5 | 1 2 3 | nmoxr | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( N ` T ) e. RR* ) |
| 6 | nltpnft | |- ( ( N ` T ) e. RR* -> ( ( N ` T ) = +oo <-> -. ( N ` T ) < +oo ) ) |
|
| 7 | 5 6 | syl | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) = +oo <-> -. ( N ` T ) < +oo ) ) |
| 8 | 7 | necon2abid | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) < +oo <-> ( N ` T ) =/= +oo ) ) |
| 9 | 4 8 | bitr4d | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( ( N ` T ) e. RR <-> ( N ` T ) < +oo ) ) |