This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of any operator is real iff it is less than plus infinity. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoxr.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nmoxr.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| nmoxr.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | ||
| Assertion | nmoreltpnf | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ( 𝑁 ‘ 𝑇 ) < +∞ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoxr.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nmoxr.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 3 | nmoxr.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 4 | 1 2 3 | nmorepnf | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ( 𝑁 ‘ 𝑇 ) ≠ +∞ ) ) |
| 5 | 1 2 3 | nmoxr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝑁 ‘ 𝑇 ) ∈ ℝ* ) |
| 6 | nltpnft | ⊢ ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ* → ( ( 𝑁 ‘ 𝑇 ) = +∞ ↔ ¬ ( 𝑁 ‘ 𝑇 ) < +∞ ) ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( ( 𝑁 ‘ 𝑇 ) = +∞ ↔ ¬ ( 𝑁 ‘ 𝑇 ) < +∞ ) ) |
| 8 | 7 | necon2abid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( ( 𝑁 ‘ 𝑇 ) < +∞ ↔ ( 𝑁 ‘ 𝑇 ) ≠ +∞ ) ) |
| 9 | 4 8 | bitr4d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ( 𝑁 ‘ 𝑇 ) < +∞ ) ) |