This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero normed ring is a domain. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nrgdomn | |- ( R e. NrmRing -> ( R e. Domn <-> R e. NzRing ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domnnzr | |- ( R e. Domn -> R e. NzRing ) |
|
| 2 | simpr | |- ( ( R e. NrmRing /\ R e. NzRing ) -> R e. NzRing ) |
|
| 3 | eqid | |- ( norm ` R ) = ( norm ` R ) |
|
| 4 | eqid | |- ( AbsVal ` R ) = ( AbsVal ` R ) |
|
| 5 | 3 4 | nrgabv | |- ( R e. NrmRing -> ( norm ` R ) e. ( AbsVal ` R ) ) |
| 6 | 5 | ne0d | |- ( R e. NrmRing -> ( AbsVal ` R ) =/= (/) ) |
| 7 | 6 | adantr | |- ( ( R e. NrmRing /\ R e. NzRing ) -> ( AbsVal ` R ) =/= (/) ) |
| 8 | 4 | abvn0b | |- ( R e. Domn <-> ( R e. NzRing /\ ( AbsVal ` R ) =/= (/) ) ) |
| 9 | 2 7 8 | sylanbrc | |- ( ( R e. NrmRing /\ R e. NzRing ) -> R e. Domn ) |
| 10 | 9 | ex | |- ( R e. NrmRing -> ( R e. NzRing -> R e. Domn ) ) |
| 11 | 1 10 | impbid2 | |- ( R e. NrmRing -> ( R e. Domn <-> R e. NzRing ) ) |