This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancel right subtraction inside a distance calculation. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ngpsubcan.x | |- X = ( Base ` G ) |
|
| ngpsubcan.m | |- .- = ( -g ` G ) |
||
| ngpsubcan.d | |- D = ( dist ` G ) |
||
| Assertion | ngpsubcan | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A .- C ) D ( B .- C ) ) = ( A D B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpsubcan.x | |- X = ( Base ` G ) |
|
| 2 | ngpsubcan.m | |- .- = ( -g ` G ) |
|
| 3 | ngpsubcan.d | |- D = ( dist ` G ) |
|
| 4 | simpr1 | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> A e. X ) |
|
| 5 | simpr3 | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> C e. X ) |
|
| 6 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 7 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 8 | 1 6 7 2 | grpsubval | |- ( ( A e. X /\ C e. X ) -> ( A .- C ) = ( A ( +g ` G ) ( ( invg ` G ) ` C ) ) ) |
| 9 | 4 5 8 | syl2anc | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A .- C ) = ( A ( +g ` G ) ( ( invg ` G ) ` C ) ) ) |
| 10 | simpr2 | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> B e. X ) |
|
| 11 | 1 6 7 2 | grpsubval | |- ( ( B e. X /\ C e. X ) -> ( B .- C ) = ( B ( +g ` G ) ( ( invg ` G ) ` C ) ) ) |
| 12 | 10 5 11 | syl2anc | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B .- C ) = ( B ( +g ` G ) ( ( invg ` G ) ` C ) ) ) |
| 13 | 9 12 | oveq12d | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A .- C ) D ( B .- C ) ) = ( ( A ( +g ` G ) ( ( invg ` G ) ` C ) ) D ( B ( +g ` G ) ( ( invg ` G ) ` C ) ) ) ) |
| 14 | simpl | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> G e. NrmGrp ) |
|
| 15 | ngpgrp | |- ( G e. NrmGrp -> G e. Grp ) |
|
| 16 | 1 7 | grpinvcl | |- ( ( G e. Grp /\ C e. X ) -> ( ( invg ` G ) ` C ) e. X ) |
| 17 | 15 5 16 | syl2an2r | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( invg ` G ) ` C ) e. X ) |
| 18 | 1 6 3 | ngprcan | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ ( ( invg ` G ) ` C ) e. X ) ) -> ( ( A ( +g ` G ) ( ( invg ` G ) ` C ) ) D ( B ( +g ` G ) ( ( invg ` G ) ` C ) ) ) = ( A D B ) ) |
| 19 | 14 4 10 17 18 | syl13anc | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A ( +g ` G ) ( ( invg ` G ) ` C ) ) D ( B ( +g ` G ) ( ( invg ` G ) ` C ) ) ) = ( A D B ) ) |
| 20 | 13 19 | eqtrd | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A .- C ) D ( B .- C ) ) = ( A D B ) ) |