This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for indexed Cartesian product. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfixpw when possible. (Contributed by Mario Carneiro, 15-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfixp.1 | |- F/_ y A |
|
| nfixp.2 | |- F/_ y B |
||
| Assertion | nfixp | |- F/_ y X_ x e. A B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfixp.1 | |- F/_ y A |
|
| 2 | nfixp.2 | |- F/_ y B |
|
| 3 | df-ixp | |- X_ x e. A B = { z | ( z Fn { x | x e. A } /\ A. x e. A ( z ` x ) e. B ) } |
|
| 4 | nfcv | |- F/_ y z |
|
| 5 | nftru | |- F/ x T. |
|
| 6 | nfcvf | |- ( -. A. y y = x -> F/_ y x ) |
|
| 7 | 6 | adantl | |- ( ( T. /\ -. A. y y = x ) -> F/_ y x ) |
| 8 | 1 | a1i | |- ( ( T. /\ -. A. y y = x ) -> F/_ y A ) |
| 9 | 7 8 | nfeld | |- ( ( T. /\ -. A. y y = x ) -> F/ y x e. A ) |
| 10 | 5 9 | nfabd2 | |- ( T. -> F/_ y { x | x e. A } ) |
| 11 | 10 | mptru | |- F/_ y { x | x e. A } |
| 12 | 4 11 | nffn | |- F/ y z Fn { x | x e. A } |
| 13 | df-ral | |- ( A. x e. A ( z ` x ) e. B <-> A. x ( x e. A -> ( z ` x ) e. B ) ) |
|
| 14 | 4 | a1i | |- ( ( T. /\ -. A. y y = x ) -> F/_ y z ) |
| 15 | 14 7 | nffvd | |- ( ( T. /\ -. A. y y = x ) -> F/_ y ( z ` x ) ) |
| 16 | 2 | a1i | |- ( ( T. /\ -. A. y y = x ) -> F/_ y B ) |
| 17 | 15 16 | nfeld | |- ( ( T. /\ -. A. y y = x ) -> F/ y ( z ` x ) e. B ) |
| 18 | 9 17 | nfimd | |- ( ( T. /\ -. A. y y = x ) -> F/ y ( x e. A -> ( z ` x ) e. B ) ) |
| 19 | 5 18 | nfald2 | |- ( T. -> F/ y A. x ( x e. A -> ( z ` x ) e. B ) ) |
| 20 | 19 | mptru | |- F/ y A. x ( x e. A -> ( z ` x ) e. B ) |
| 21 | 13 20 | nfxfr | |- F/ y A. x e. A ( z ` x ) e. B |
| 22 | 12 21 | nfan | |- F/ y ( z Fn { x | x e. A } /\ A. x e. A ( z ` x ) e. B ) |
| 23 | 22 | nfab | |- F/_ y { z | ( z Fn { x | x e. A } /\ A. x e. A ( z ` x ) e. B ) } |
| 24 | 3 23 | nfcxfr | |- F/_ y X_ x e. A B |