This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for indexed Cartesian product. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfixpw when possible. (Contributed by Mario Carneiro, 15-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfixp.1 | ⊢ Ⅎ 𝑦 𝐴 | |
| nfixp.2 | ⊢ Ⅎ 𝑦 𝐵 | ||
| Assertion | nfixp | ⊢ Ⅎ 𝑦 X 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfixp.1 | ⊢ Ⅎ 𝑦 𝐴 | |
| 2 | nfixp.2 | ⊢ Ⅎ 𝑦 𝐵 | |
| 3 | df-ixp | ⊢ X 𝑥 ∈ 𝐴 𝐵 = { 𝑧 ∣ ( 𝑧 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) } | |
| 4 | nfcv | ⊢ Ⅎ 𝑦 𝑧 | |
| 5 | nftru | ⊢ Ⅎ 𝑥 ⊤ | |
| 6 | nfcvf | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝑥 ) | |
| 7 | 6 | adantl | ⊢ ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → Ⅎ 𝑦 𝑥 ) |
| 8 | 1 | a1i | ⊢ ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → Ⅎ 𝑦 𝐴 ) |
| 9 | 7 8 | nfeld | ⊢ ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → Ⅎ 𝑦 𝑥 ∈ 𝐴 ) |
| 10 | 5 9 | nfabd2 | ⊢ ( ⊤ → Ⅎ 𝑦 { 𝑥 ∣ 𝑥 ∈ 𝐴 } ) |
| 11 | 10 | mptru | ⊢ Ⅎ 𝑦 { 𝑥 ∣ 𝑥 ∈ 𝐴 } |
| 12 | 4 11 | nffn | ⊢ Ⅎ 𝑦 𝑧 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } |
| 13 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ) | |
| 14 | 4 | a1i | ⊢ ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → Ⅎ 𝑦 𝑧 ) |
| 15 | 14 7 | nffvd | ⊢ ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → Ⅎ 𝑦 ( 𝑧 ‘ 𝑥 ) ) |
| 16 | 2 | a1i | ⊢ ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → Ⅎ 𝑦 𝐵 ) |
| 17 | 15 16 | nfeld | ⊢ ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → Ⅎ 𝑦 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) |
| 18 | 9 17 | nfimd | ⊢ ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 → ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 19 | 5 18 | nfald2 | ⊢ ( ⊤ → Ⅎ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 20 | 19 | mptru | ⊢ Ⅎ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) |
| 21 | 13 20 | nfxfr | ⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 |
| 22 | 12 21 | nfan | ⊢ Ⅎ 𝑦 ( 𝑧 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) |
| 23 | 22 | nfab | ⊢ Ⅎ 𝑦 { 𝑧 ∣ ( 𝑧 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) } |
| 24 | 3 23 | nfcxfr | ⊢ Ⅎ 𝑦 X 𝑥 ∈ 𝐴 𝐵 |