This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for a class abstraction. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Mario Carneiro, 8-Oct-2016) (Proof shortened by Wolf Lammen, 10-May-2023) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfabd2.1 | |- F/ y ph |
|
| nfabd2.2 | |- ( ( ph /\ -. A. x x = y ) -> F/ x ps ) |
||
| Assertion | nfabd2 | |- ( ph -> F/_ x { y | ps } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfabd2.1 | |- F/ y ph |
|
| 2 | nfabd2.2 | |- ( ( ph /\ -. A. x x = y ) -> F/ x ps ) |
|
| 3 | nfnae | |- F/ y -. A. x x = y |
|
| 4 | 1 3 | nfan | |- F/ y ( ph /\ -. A. x x = y ) |
| 5 | 4 2 | nfabd | |- ( ( ph /\ -. A. x x = y ) -> F/_ x { y | ps } ) |
| 6 | 5 | ex | |- ( ph -> ( -. A. x x = y -> F/_ x { y | ps } ) ) |
| 7 | nfab1 | |- F/_ y { y | ps } |
|
| 8 | eqidd | |- ( A. x x = y -> { y | ps } = { y | ps } ) |
|
| 9 | 8 | drnfc1 | |- ( A. x x = y -> ( F/_ x { y | ps } <-> F/_ y { y | ps } ) ) |
| 10 | 7 9 | mpbiri | |- ( A. x x = y -> F/_ x { y | ps } ) |
| 11 | 6 10 | pm2.61d2 | |- ( ph -> F/_ x { y | ps } ) |