This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If x and y are distinct, then x is not free in y . Usage of this theorem is discouraged because it depends on ax-13 . See nfcv for a version that replaces the distinctor with a disjoint variable condition, requiring fewer axioms. (Contributed by Mario Carneiro, 8-Oct-2016) Avoid ax-ext . (Revised by Wolf Lammen, 10-May-2023) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nfcvf | |- ( -. A. x x = y -> F/_ x y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | |- F/ w -. A. x x = y |
|
| 2 | nfv | |- F/ x w e. z |
|
| 3 | elequ2 | |- ( z = y -> ( w e. z <-> w e. y ) ) |
|
| 4 | 2 3 | dvelimnf | |- ( -. A. x x = y -> F/ x w e. y ) |
| 5 | 1 4 | nfcd | |- ( -. A. x x = y -> F/_ x y ) |