This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of bound-variable hypothesis builder nffv . (Contributed by NM, 10-Nov-2005) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nffvd.2 | |- ( ph -> F/_ x F ) |
|
| nffvd.3 | |- ( ph -> F/_ x A ) |
||
| Assertion | nffvd | |- ( ph -> F/_ x ( F ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nffvd.2 | |- ( ph -> F/_ x F ) |
|
| 2 | nffvd.3 | |- ( ph -> F/_ x A ) |
|
| 3 | nfaba1 | |- F/_ x { z | A. x z e. F } |
|
| 4 | nfaba1 | |- F/_ x { z | A. x z e. A } |
|
| 5 | 3 4 | nffv | |- F/_ x ( { z | A. x z e. F } ` { z | A. x z e. A } ) |
| 6 | nfnfc1 | |- F/ x F/_ x F |
|
| 7 | nfnfc1 | |- F/ x F/_ x A |
|
| 8 | 6 7 | nfan | |- F/ x ( F/_ x F /\ F/_ x A ) |
| 9 | abidnf | |- ( F/_ x F -> { z | A. x z e. F } = F ) |
|
| 10 | 9 | adantr | |- ( ( F/_ x F /\ F/_ x A ) -> { z | A. x z e. F } = F ) |
| 11 | abidnf | |- ( F/_ x A -> { z | A. x z e. A } = A ) |
|
| 12 | 11 | adantl | |- ( ( F/_ x F /\ F/_ x A ) -> { z | A. x z e. A } = A ) |
| 13 | 10 12 | fveq12d | |- ( ( F/_ x F /\ F/_ x A ) -> ( { z | A. x z e. F } ` { z | A. x z e. A } ) = ( F ` A ) ) |
| 14 | 8 13 | nfceqdf | |- ( ( F/_ x F /\ F/_ x A ) -> ( F/_ x ( { z | A. x z e. F } ` { z | A. x z e. A } ) <-> F/_ x ( F ` A ) ) ) |
| 15 | 1 2 14 | syl2anc | |- ( ph -> ( F/_ x ( { z | A. x z e. F } ` { z | A. x z e. A } ) <-> F/_ x ( F ` A ) ) ) |
| 16 | 5 15 | mpbii | |- ( ph -> F/_ x ( F ` A ) ) |