This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A neighbor of a vertex in a pseudograph. (Contributed by AV, 5-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nbuhgr.v | |- V = ( Vtx ` G ) |
|
| nbuhgr.e | |- E = ( Edg ` G ) |
||
| Assertion | nbupgrel | |- ( ( ( G e. UPGraph /\ K e. V ) /\ ( N e. V /\ N =/= K ) ) -> ( N e. ( G NeighbVtx K ) <-> { N , K } e. E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbuhgr.v | |- V = ( Vtx ` G ) |
|
| 2 | nbuhgr.e | |- E = ( Edg ` G ) |
|
| 3 | 1 2 | nbupgr | |- ( ( G e. UPGraph /\ K e. V ) -> ( G NeighbVtx K ) = { n e. ( V \ { K } ) | { K , n } e. E } ) |
| 4 | 3 | eleq2d | |- ( ( G e. UPGraph /\ K e. V ) -> ( N e. ( G NeighbVtx K ) <-> N e. { n e. ( V \ { K } ) | { K , n } e. E } ) ) |
| 5 | preq2 | |- ( n = N -> { K , n } = { K , N } ) |
|
| 6 | 5 | eleq1d | |- ( n = N -> ( { K , n } e. E <-> { K , N } e. E ) ) |
| 7 | 6 | elrab | |- ( N e. { n e. ( V \ { K } ) | { K , n } e. E } <-> ( N e. ( V \ { K } ) /\ { K , N } e. E ) ) |
| 8 | 4 7 | bitrdi | |- ( ( G e. UPGraph /\ K e. V ) -> ( N e. ( G NeighbVtx K ) <-> ( N e. ( V \ { K } ) /\ { K , N } e. E ) ) ) |
| 9 | 8 | adantr | |- ( ( ( G e. UPGraph /\ K e. V ) /\ ( N e. V /\ N =/= K ) ) -> ( N e. ( G NeighbVtx K ) <-> ( N e. ( V \ { K } ) /\ { K , N } e. E ) ) ) |
| 10 | eldifsn | |- ( N e. ( V \ { K } ) <-> ( N e. V /\ N =/= K ) ) |
|
| 11 | 10 | biimpri | |- ( ( N e. V /\ N =/= K ) -> N e. ( V \ { K } ) ) |
| 12 | 11 | adantl | |- ( ( ( G e. UPGraph /\ K e. V ) /\ ( N e. V /\ N =/= K ) ) -> N e. ( V \ { K } ) ) |
| 13 | 12 | biantrurd | |- ( ( ( G e. UPGraph /\ K e. V ) /\ ( N e. V /\ N =/= K ) ) -> ( { K , N } e. E <-> ( N e. ( V \ { K } ) /\ { K , N } e. E ) ) ) |
| 14 | prcom | |- { K , N } = { N , K } |
|
| 15 | 14 | eleq1i | |- ( { K , N } e. E <-> { N , K } e. E ) |
| 16 | 15 | a1i | |- ( ( ( G e. UPGraph /\ K e. V ) /\ ( N e. V /\ N =/= K ) ) -> ( { K , N } e. E <-> { N , K } e. E ) ) |
| 17 | 9 13 16 | 3bitr2d | |- ( ( ( G e. UPGraph /\ K e. V ) /\ ( N e. V /\ N =/= K ) ) -> ( N e. ( G NeighbVtx K ) <-> { N , K } e. E ) ) |