This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The neighbors of a vertex X form a subset of all vertices except the vertex X itself. Stronger version of nbgrssvtx . (Contributed by Alexander van der Vekens, 13-Jul-2018) (Revised by AV, 3-Nov-2020) (Revised by AV, 12-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nbgrssovtx.v | |- V = ( Vtx ` G ) |
|
| Assertion | nbgrssovtx | |- ( G NeighbVtx X ) C_ ( V \ { X } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbgrssovtx.v | |- V = ( Vtx ` G ) |
|
| 2 | 1 | nbgrisvtx | |- ( v e. ( G NeighbVtx X ) -> v e. V ) |
| 3 | nbgrnself2 | |- X e/ ( G NeighbVtx X ) |
|
| 4 | df-nel | |- ( v e/ ( G NeighbVtx X ) <-> -. v e. ( G NeighbVtx X ) ) |
|
| 5 | neleq1 | |- ( v = X -> ( v e/ ( G NeighbVtx X ) <-> X e/ ( G NeighbVtx X ) ) ) |
|
| 6 | 4 5 | bitr3id | |- ( v = X -> ( -. v e. ( G NeighbVtx X ) <-> X e/ ( G NeighbVtx X ) ) ) |
| 7 | 3 6 | mpbiri | |- ( v = X -> -. v e. ( G NeighbVtx X ) ) |
| 8 | 7 | necon2ai | |- ( v e. ( G NeighbVtx X ) -> v =/= X ) |
| 9 | eldifsn | |- ( v e. ( V \ { X } ) <-> ( v e. V /\ v =/= X ) ) |
|
| 10 | 2 8 9 | sylanbrc | |- ( v e. ( G NeighbVtx X ) -> v e. ( V \ { X } ) ) |
| 11 | 10 | ssriv | |- ( G NeighbVtx X ) C_ ( V \ { X } ) |