This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the difference of a finite set and a proper pair of its elements is the set's size minus 2. (Contributed by AV, 16-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashdifpr | |- ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( # ` ( A \ { B , C } ) ) = ( ( # ` A ) - 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difpr | |- ( A \ { B , C } ) = ( ( A \ { B } ) \ { C } ) |
|
| 2 | 1 | a1i | |- ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( A \ { B , C } ) = ( ( A \ { B } ) \ { C } ) ) |
| 3 | 2 | fveq2d | |- ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( # ` ( A \ { B , C } ) ) = ( # ` ( ( A \ { B } ) \ { C } ) ) ) |
| 4 | diffi | |- ( A e. Fin -> ( A \ { B } ) e. Fin ) |
|
| 5 | necom | |- ( B =/= C <-> C =/= B ) |
|
| 6 | 5 | biimpi | |- ( B =/= C -> C =/= B ) |
| 7 | 6 | anim2i | |- ( ( C e. A /\ B =/= C ) -> ( C e. A /\ C =/= B ) ) |
| 8 | 7 | 3adant1 | |- ( ( B e. A /\ C e. A /\ B =/= C ) -> ( C e. A /\ C =/= B ) ) |
| 9 | 8 | adantl | |- ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( C e. A /\ C =/= B ) ) |
| 10 | eldifsn | |- ( C e. ( A \ { B } ) <-> ( C e. A /\ C =/= B ) ) |
|
| 11 | 9 10 | sylibr | |- ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> C e. ( A \ { B } ) ) |
| 12 | hashdifsn | |- ( ( ( A \ { B } ) e. Fin /\ C e. ( A \ { B } ) ) -> ( # ` ( ( A \ { B } ) \ { C } ) ) = ( ( # ` ( A \ { B } ) ) - 1 ) ) |
|
| 13 | 4 11 12 | syl2an2r | |- ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( # ` ( ( A \ { B } ) \ { C } ) ) = ( ( # ` ( A \ { B } ) ) - 1 ) ) |
| 14 | hashdifsn | |- ( ( A e. Fin /\ B e. A ) -> ( # ` ( A \ { B } ) ) = ( ( # ` A ) - 1 ) ) |
|
| 15 | 14 | 3ad2antr1 | |- ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( # ` ( A \ { B } ) ) = ( ( # ` A ) - 1 ) ) |
| 16 | 15 | oveq1d | |- ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( ( # ` ( A \ { B } ) ) - 1 ) = ( ( ( # ` A ) - 1 ) - 1 ) ) |
| 17 | hashcl | |- ( A e. Fin -> ( # ` A ) e. NN0 ) |
|
| 18 | 17 | nn0cnd | |- ( A e. Fin -> ( # ` A ) e. CC ) |
| 19 | sub1m1 | |- ( ( # ` A ) e. CC -> ( ( ( # ` A ) - 1 ) - 1 ) = ( ( # ` A ) - 2 ) ) |
|
| 20 | 18 19 | syl | |- ( A e. Fin -> ( ( ( # ` A ) - 1 ) - 1 ) = ( ( # ` A ) - 2 ) ) |
| 21 | 20 | adantr | |- ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( ( ( # ` A ) - 1 ) - 1 ) = ( ( # ` A ) - 2 ) ) |
| 22 | 16 21 | eqtrd | |- ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( ( # ` ( A \ { B } ) ) - 1 ) = ( ( # ` A ) - 2 ) ) |
| 23 | 3 13 22 | 3eqtrd | |- ( ( A e. Fin /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( # ` ( A \ { B , C } ) ) = ( ( # ` A ) - 2 ) ) |