This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the number of neighbors of a vertex in a finite simple graph is the number of vertices of the graph minus 1, each vertex except the first mentioned vertex is a neighbor of this vertex. (Contributed by Alexander van der Vekens, 14-Jul-2018) (Revised by AV, 16-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hashnbusgrnn0.v | |- V = ( Vtx ` G ) |
|
| Assertion | nbusgrvtxm1 | |- ( ( G e. FinUSGraph /\ U e. V ) -> ( ( # ` ( G NeighbVtx U ) ) = ( ( # ` V ) - 1 ) -> ( ( M e. V /\ M =/= U ) -> M e. ( G NeighbVtx U ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashnbusgrnn0.v | |- V = ( Vtx ` G ) |
|
| 2 | ax-1 | |- ( M e. ( G NeighbVtx U ) -> ( ( M e. V /\ M =/= U ) -> M e. ( G NeighbVtx U ) ) ) |
|
| 3 | 2 | 2a1d | |- ( M e. ( G NeighbVtx U ) -> ( ( G e. FinUSGraph /\ U e. V ) -> ( ( # ` ( G NeighbVtx U ) ) = ( ( # ` V ) - 1 ) -> ( ( M e. V /\ M =/= U ) -> M e. ( G NeighbVtx U ) ) ) ) ) |
| 4 | simpr | |- ( ( -. M e. ( G NeighbVtx U ) /\ ( G e. FinUSGraph /\ U e. V ) ) -> ( G e. FinUSGraph /\ U e. V ) ) |
|
| 5 | 4 | adantr | |- ( ( ( -. M e. ( G NeighbVtx U ) /\ ( G e. FinUSGraph /\ U e. V ) ) /\ ( M e. V /\ M =/= U ) ) -> ( G e. FinUSGraph /\ U e. V ) ) |
| 6 | simprl | |- ( ( ( -. M e. ( G NeighbVtx U ) /\ ( G e. FinUSGraph /\ U e. V ) ) /\ ( M e. V /\ M =/= U ) ) -> M e. V ) |
|
| 7 | simpr | |- ( ( M e. V /\ M =/= U ) -> M =/= U ) |
|
| 8 | 7 | adantl | |- ( ( ( -. M e. ( G NeighbVtx U ) /\ ( G e. FinUSGraph /\ U e. V ) ) /\ ( M e. V /\ M =/= U ) ) -> M =/= U ) |
| 9 | df-nel | |- ( M e/ ( G NeighbVtx U ) <-> -. M e. ( G NeighbVtx U ) ) |
|
| 10 | 9 | biimpri | |- ( -. M e. ( G NeighbVtx U ) -> M e/ ( G NeighbVtx U ) ) |
| 11 | 10 | adantr | |- ( ( -. M e. ( G NeighbVtx U ) /\ ( G e. FinUSGraph /\ U e. V ) ) -> M e/ ( G NeighbVtx U ) ) |
| 12 | 11 | adantr | |- ( ( ( -. M e. ( G NeighbVtx U ) /\ ( G e. FinUSGraph /\ U e. V ) ) /\ ( M e. V /\ M =/= U ) ) -> M e/ ( G NeighbVtx U ) ) |
| 13 | 1 | nbfusgrlevtxm2 | |- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( M e. V /\ M =/= U /\ M e/ ( G NeighbVtx U ) ) ) -> ( # ` ( G NeighbVtx U ) ) <_ ( ( # ` V ) - 2 ) ) |
| 14 | 5 6 8 12 13 | syl13anc | |- ( ( ( -. M e. ( G NeighbVtx U ) /\ ( G e. FinUSGraph /\ U e. V ) ) /\ ( M e. V /\ M =/= U ) ) -> ( # ` ( G NeighbVtx U ) ) <_ ( ( # ` V ) - 2 ) ) |
| 15 | breq1 | |- ( ( # ` ( G NeighbVtx U ) ) = ( ( # ` V ) - 1 ) -> ( ( # ` ( G NeighbVtx U ) ) <_ ( ( # ` V ) - 2 ) <-> ( ( # ` V ) - 1 ) <_ ( ( # ` V ) - 2 ) ) ) |
|
| 16 | 15 | adantl | |- ( ( ( ( -. M e. ( G NeighbVtx U ) /\ ( G e. FinUSGraph /\ U e. V ) ) /\ ( M e. V /\ M =/= U ) ) /\ ( # ` ( G NeighbVtx U ) ) = ( ( # ` V ) - 1 ) ) -> ( ( # ` ( G NeighbVtx U ) ) <_ ( ( # ` V ) - 2 ) <-> ( ( # ` V ) - 1 ) <_ ( ( # ` V ) - 2 ) ) ) |
| 17 | 1 | fusgrvtxfi | |- ( G e. FinUSGraph -> V e. Fin ) |
| 18 | hashcl | |- ( V e. Fin -> ( # ` V ) e. NN0 ) |
|
| 19 | nn0re | |- ( ( # ` V ) e. NN0 -> ( # ` V ) e. RR ) |
|
| 20 | 1red | |- ( ( # ` V ) e. RR -> 1 e. RR ) |
|
| 21 | 2re | |- 2 e. RR |
|
| 22 | 21 | a1i | |- ( ( # ` V ) e. RR -> 2 e. RR ) |
| 23 | id | |- ( ( # ` V ) e. RR -> ( # ` V ) e. RR ) |
|
| 24 | 1lt2 | |- 1 < 2 |
|
| 25 | 24 | a1i | |- ( ( # ` V ) e. RR -> 1 < 2 ) |
| 26 | 20 22 23 25 | ltsub2dd | |- ( ( # ` V ) e. RR -> ( ( # ` V ) - 2 ) < ( ( # ` V ) - 1 ) ) |
| 27 | 23 22 | resubcld | |- ( ( # ` V ) e. RR -> ( ( # ` V ) - 2 ) e. RR ) |
| 28 | peano2rem | |- ( ( # ` V ) e. RR -> ( ( # ` V ) - 1 ) e. RR ) |
|
| 29 | 27 28 | ltnled | |- ( ( # ` V ) e. RR -> ( ( ( # ` V ) - 2 ) < ( ( # ` V ) - 1 ) <-> -. ( ( # ` V ) - 1 ) <_ ( ( # ` V ) - 2 ) ) ) |
| 30 | 26 29 | mpbid | |- ( ( # ` V ) e. RR -> -. ( ( # ` V ) - 1 ) <_ ( ( # ` V ) - 2 ) ) |
| 31 | 17 18 19 30 | 4syl | |- ( G e. FinUSGraph -> -. ( ( # ` V ) - 1 ) <_ ( ( # ` V ) - 2 ) ) |
| 32 | 31 | pm2.21d | |- ( G e. FinUSGraph -> ( ( ( # ` V ) - 1 ) <_ ( ( # ` V ) - 2 ) -> M e. ( G NeighbVtx U ) ) ) |
| 33 | 32 | adantr | |- ( ( G e. FinUSGraph /\ U e. V ) -> ( ( ( # ` V ) - 1 ) <_ ( ( # ` V ) - 2 ) -> M e. ( G NeighbVtx U ) ) ) |
| 34 | 33 | ad3antlr | |- ( ( ( ( -. M e. ( G NeighbVtx U ) /\ ( G e. FinUSGraph /\ U e. V ) ) /\ ( M e. V /\ M =/= U ) ) /\ ( # ` ( G NeighbVtx U ) ) = ( ( # ` V ) - 1 ) ) -> ( ( ( # ` V ) - 1 ) <_ ( ( # ` V ) - 2 ) -> M e. ( G NeighbVtx U ) ) ) |
| 35 | 16 34 | sylbid | |- ( ( ( ( -. M e. ( G NeighbVtx U ) /\ ( G e. FinUSGraph /\ U e. V ) ) /\ ( M e. V /\ M =/= U ) ) /\ ( # ` ( G NeighbVtx U ) ) = ( ( # ` V ) - 1 ) ) -> ( ( # ` ( G NeighbVtx U ) ) <_ ( ( # ` V ) - 2 ) -> M e. ( G NeighbVtx U ) ) ) |
| 36 | 35 | ex | |- ( ( ( -. M e. ( G NeighbVtx U ) /\ ( G e. FinUSGraph /\ U e. V ) ) /\ ( M e. V /\ M =/= U ) ) -> ( ( # ` ( G NeighbVtx U ) ) = ( ( # ` V ) - 1 ) -> ( ( # ` ( G NeighbVtx U ) ) <_ ( ( # ` V ) - 2 ) -> M e. ( G NeighbVtx U ) ) ) ) |
| 37 | 14 36 | mpid | |- ( ( ( -. M e. ( G NeighbVtx U ) /\ ( G e. FinUSGraph /\ U e. V ) ) /\ ( M e. V /\ M =/= U ) ) -> ( ( # ` ( G NeighbVtx U ) ) = ( ( # ` V ) - 1 ) -> M e. ( G NeighbVtx U ) ) ) |
| 38 | 37 | ex | |- ( ( -. M e. ( G NeighbVtx U ) /\ ( G e. FinUSGraph /\ U e. V ) ) -> ( ( M e. V /\ M =/= U ) -> ( ( # ` ( G NeighbVtx U ) ) = ( ( # ` V ) - 1 ) -> M e. ( G NeighbVtx U ) ) ) ) |
| 39 | 38 | com23 | |- ( ( -. M e. ( G NeighbVtx U ) /\ ( G e. FinUSGraph /\ U e. V ) ) -> ( ( # ` ( G NeighbVtx U ) ) = ( ( # ` V ) - 1 ) -> ( ( M e. V /\ M =/= U ) -> M e. ( G NeighbVtx U ) ) ) ) |
| 40 | 39 | ex | |- ( -. M e. ( G NeighbVtx U ) -> ( ( G e. FinUSGraph /\ U e. V ) -> ( ( # ` ( G NeighbVtx U ) ) = ( ( # ` V ) - 1 ) -> ( ( M e. V /\ M =/= U ) -> M e. ( G NeighbVtx U ) ) ) ) ) |
| 41 | 3 40 | pm2.61i | |- ( ( G e. FinUSGraph /\ U e. V ) -> ( ( # ` ( G NeighbVtx U ) ) = ( ( # ` V ) - 1 ) -> ( ( M e. V /\ M =/= U ) -> M e. ( G NeighbVtx U ) ) ) ) |