This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer multiplied with its successor divided by 2 yields an integer, i.e. an integer multiplied with its successor is even. (Contributed by AV, 19-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulsucdiv2z | |- ( N e. ZZ -> ( ( N x. ( N + 1 ) ) / 2 ) e. ZZ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zeo | |- ( N e. ZZ -> ( ( N / 2 ) e. ZZ \/ ( ( N + 1 ) / 2 ) e. ZZ ) ) |
|
| 2 | peano2z | |- ( N e. ZZ -> ( N + 1 ) e. ZZ ) |
|
| 3 | zmulcl | |- ( ( ( N / 2 ) e. ZZ /\ ( N + 1 ) e. ZZ ) -> ( ( N / 2 ) x. ( N + 1 ) ) e. ZZ ) |
|
| 4 | 2 3 | sylan2 | |- ( ( ( N / 2 ) e. ZZ /\ N e. ZZ ) -> ( ( N / 2 ) x. ( N + 1 ) ) e. ZZ ) |
| 5 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 6 | 2 | zcnd | |- ( N e. ZZ -> ( N + 1 ) e. CC ) |
| 7 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 8 | 7 | a1i | |- ( N e. ZZ -> ( 2 e. CC /\ 2 =/= 0 ) ) |
| 9 | div23 | |- ( ( N e. CC /\ ( N + 1 ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( N x. ( N + 1 ) ) / 2 ) = ( ( N / 2 ) x. ( N + 1 ) ) ) |
|
| 10 | 5 6 8 9 | syl3anc | |- ( N e. ZZ -> ( ( N x. ( N + 1 ) ) / 2 ) = ( ( N / 2 ) x. ( N + 1 ) ) ) |
| 11 | 10 | eleq1d | |- ( N e. ZZ -> ( ( ( N x. ( N + 1 ) ) / 2 ) e. ZZ <-> ( ( N / 2 ) x. ( N + 1 ) ) e. ZZ ) ) |
| 12 | 11 | adantl | |- ( ( ( N / 2 ) e. ZZ /\ N e. ZZ ) -> ( ( ( N x. ( N + 1 ) ) / 2 ) e. ZZ <-> ( ( N / 2 ) x. ( N + 1 ) ) e. ZZ ) ) |
| 13 | 4 12 | mpbird | |- ( ( ( N / 2 ) e. ZZ /\ N e. ZZ ) -> ( ( N x. ( N + 1 ) ) / 2 ) e. ZZ ) |
| 14 | 13 | ex | |- ( ( N / 2 ) e. ZZ -> ( N e. ZZ -> ( ( N x. ( N + 1 ) ) / 2 ) e. ZZ ) ) |
| 15 | zmulcl | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( N x. ( ( N + 1 ) / 2 ) ) e. ZZ ) |
|
| 16 | 15 | ancoms | |- ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ N e. ZZ ) -> ( N x. ( ( N + 1 ) / 2 ) ) e. ZZ ) |
| 17 | divass | |- ( ( N e. CC /\ ( N + 1 ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( N x. ( N + 1 ) ) / 2 ) = ( N x. ( ( N + 1 ) / 2 ) ) ) |
|
| 18 | 5 6 8 17 | syl3anc | |- ( N e. ZZ -> ( ( N x. ( N + 1 ) ) / 2 ) = ( N x. ( ( N + 1 ) / 2 ) ) ) |
| 19 | 18 | eleq1d | |- ( N e. ZZ -> ( ( ( N x. ( N + 1 ) ) / 2 ) e. ZZ <-> ( N x. ( ( N + 1 ) / 2 ) ) e. ZZ ) ) |
| 20 | 19 | adantl | |- ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ N e. ZZ ) -> ( ( ( N x. ( N + 1 ) ) / 2 ) e. ZZ <-> ( N x. ( ( N + 1 ) / 2 ) ) e. ZZ ) ) |
| 21 | 16 20 | mpbird | |- ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ N e. ZZ ) -> ( ( N x. ( N + 1 ) ) / 2 ) e. ZZ ) |
| 22 | 21 | ex | |- ( ( ( N + 1 ) / 2 ) e. ZZ -> ( N e. ZZ -> ( ( N x. ( N + 1 ) ) / 2 ) e. ZZ ) ) |
| 23 | 14 22 | jaoi | |- ( ( ( N / 2 ) e. ZZ \/ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( N e. ZZ -> ( ( N x. ( N + 1 ) ) / 2 ) e. ZZ ) ) |
| 24 | 1 23 | mpcom | |- ( N e. ZZ -> ( ( N x. ( N + 1 ) ) / 2 ) e. ZZ ) |