This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A squared odd number minus 1 divided by 8 is an integer. (Contributed by AV, 19-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqoddm1div8z | |- ( ( N e. ZZ /\ -. 2 || N ) -> ( ( ( N ^ 2 ) - 1 ) / 8 ) e. ZZ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odd2np1 | |- ( N e. ZZ -> ( -. 2 || N <-> E. k e. ZZ ( ( 2 x. k ) + 1 ) = N ) ) |
|
| 2 | 1 | biimpa | |- ( ( N e. ZZ /\ -. 2 || N ) -> E. k e. ZZ ( ( 2 x. k ) + 1 ) = N ) |
| 3 | eqcom | |- ( ( ( 2 x. k ) + 1 ) = N <-> N = ( ( 2 x. k ) + 1 ) ) |
|
| 4 | sqoddm1div8 | |- ( ( k e. ZZ /\ N = ( ( 2 x. k ) + 1 ) ) -> ( ( ( N ^ 2 ) - 1 ) / 8 ) = ( ( k x. ( k + 1 ) ) / 2 ) ) |
|
| 5 | 4 | adantll | |- ( ( ( ( N e. ZZ /\ -. 2 || N ) /\ k e. ZZ ) /\ N = ( ( 2 x. k ) + 1 ) ) -> ( ( ( N ^ 2 ) - 1 ) / 8 ) = ( ( k x. ( k + 1 ) ) / 2 ) ) |
| 6 | mulsucdiv2z | |- ( k e. ZZ -> ( ( k x. ( k + 1 ) ) / 2 ) e. ZZ ) |
|
| 7 | 6 | ad2antlr | |- ( ( ( ( N e. ZZ /\ -. 2 || N ) /\ k e. ZZ ) /\ N = ( ( 2 x. k ) + 1 ) ) -> ( ( k x. ( k + 1 ) ) / 2 ) e. ZZ ) |
| 8 | 5 7 | eqeltrd | |- ( ( ( ( N e. ZZ /\ -. 2 || N ) /\ k e. ZZ ) /\ N = ( ( 2 x. k ) + 1 ) ) -> ( ( ( N ^ 2 ) - 1 ) / 8 ) e. ZZ ) |
| 9 | 8 | ex | |- ( ( ( N e. ZZ /\ -. 2 || N ) /\ k e. ZZ ) -> ( N = ( ( 2 x. k ) + 1 ) -> ( ( ( N ^ 2 ) - 1 ) / 8 ) e. ZZ ) ) |
| 10 | 3 9 | biimtrid | |- ( ( ( N e. ZZ /\ -. 2 || N ) /\ k e. ZZ ) -> ( ( ( 2 x. k ) + 1 ) = N -> ( ( ( N ^ 2 ) - 1 ) / 8 ) e. ZZ ) ) |
| 11 | 10 | rexlimdva | |- ( ( N e. ZZ /\ -. 2 || N ) -> ( E. k e. ZZ ( ( 2 x. k ) + 1 ) = N -> ( ( ( N ^ 2 ) - 1 ) / 8 ) e. ZZ ) ) |
| 12 | 2 11 | mpd | |- ( ( N e. ZZ /\ -. 2 || N ) -> ( ( ( N ^ 2 ) - 1 ) / 8 ) e. ZZ ) |