This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulp1mod1 | |- ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( ( ( N x. A ) + 1 ) mod N ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelcn | |- ( N e. ( ZZ>= ` 2 ) -> N e. CC ) |
|
| 2 | 1 | adantl | |- ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> N e. CC ) |
| 3 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 4 | 3 | adantr | |- ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> A e. CC ) |
| 5 | 2 4 | mulcomd | |- ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( N x. A ) = ( A x. N ) ) |
| 6 | 5 | oveq1d | |- ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( ( N x. A ) mod N ) = ( ( A x. N ) mod N ) ) |
| 7 | eluz2nn | |- ( N e. ( ZZ>= ` 2 ) -> N e. NN ) |
|
| 8 | 7 | nnrpd | |- ( N e. ( ZZ>= ` 2 ) -> N e. RR+ ) |
| 9 | mulmod0 | |- ( ( A e. ZZ /\ N e. RR+ ) -> ( ( A x. N ) mod N ) = 0 ) |
|
| 10 | 8 9 | sylan2 | |- ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( ( A x. N ) mod N ) = 0 ) |
| 11 | 6 10 | eqtrd | |- ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( ( N x. A ) mod N ) = 0 ) |
| 12 | 11 | oveq1d | |- ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( ( ( N x. A ) mod N ) + 1 ) = ( 0 + 1 ) ) |
| 13 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 14 | 12 13 | eqtrdi | |- ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( ( ( N x. A ) mod N ) + 1 ) = 1 ) |
| 15 | 14 | oveq1d | |- ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( ( ( ( N x. A ) mod N ) + 1 ) mod N ) = ( 1 mod N ) ) |
| 16 | eluzelre | |- ( N e. ( ZZ>= ` 2 ) -> N e. RR ) |
|
| 17 | 16 | adantl | |- ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> N e. RR ) |
| 18 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 19 | 18 | adantr | |- ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> A e. RR ) |
| 20 | 17 19 | remulcld | |- ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( N x. A ) e. RR ) |
| 21 | 1red | |- ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> 1 e. RR ) |
|
| 22 | 8 | adantl | |- ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> N e. RR+ ) |
| 23 | modaddmod | |- ( ( ( N x. A ) e. RR /\ 1 e. RR /\ N e. RR+ ) -> ( ( ( ( N x. A ) mod N ) + 1 ) mod N ) = ( ( ( N x. A ) + 1 ) mod N ) ) |
|
| 24 | 20 21 22 23 | syl3anc | |- ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( ( ( ( N x. A ) mod N ) + 1 ) mod N ) = ( ( ( N x. A ) + 1 ) mod N ) ) |
| 25 | eluz2gt1 | |- ( N e. ( ZZ>= ` 2 ) -> 1 < N ) |
|
| 26 | 16 25 | jca | |- ( N e. ( ZZ>= ` 2 ) -> ( N e. RR /\ 1 < N ) ) |
| 27 | 26 | adantl | |- ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( N e. RR /\ 1 < N ) ) |
| 28 | 1mod | |- ( ( N e. RR /\ 1 < N ) -> ( 1 mod N ) = 1 ) |
|
| 29 | 27 28 | syl | |- ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( 1 mod N ) = 1 ) |
| 30 | 15 24 29 | 3eqtr3d | |- ( ( A e. ZZ /\ N e. ( ZZ>= ` 2 ) ) -> ( ( ( N x. A ) + 1 ) mod N ) = 1 ) |