This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real number is the sum of the number and a multiple of a positive real number modulo the positive real number. (Contributed by AV, 7-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | muladdmod | |- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( ( ( N x. M ) + A ) mod M ) = ( A mod M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 2 | 1 | 3ad2ant3 | |- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> N e. RR ) |
| 3 | rpre | |- ( M e. RR+ -> M e. RR ) |
|
| 4 | 3 | 3ad2ant2 | |- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> M e. RR ) |
| 5 | 2 4 | remulcld | |- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( N x. M ) e. RR ) |
| 6 | simp1 | |- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> A e. RR ) |
|
| 7 | simp2 | |- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> M e. RR+ ) |
|
| 8 | modaddmod | |- ( ( ( N x. M ) e. RR /\ A e. RR /\ M e. RR+ ) -> ( ( ( ( N x. M ) mod M ) + A ) mod M ) = ( ( ( N x. M ) + A ) mod M ) ) |
|
| 9 | 5 6 7 8 | syl3anc | |- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( ( ( ( N x. M ) mod M ) + A ) mod M ) = ( ( ( N x. M ) + A ) mod M ) ) |
| 10 | pm3.22 | |- ( ( M e. RR+ /\ N e. ZZ ) -> ( N e. ZZ /\ M e. RR+ ) ) |
|
| 11 | 10 | 3adant1 | |- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( N e. ZZ /\ M e. RR+ ) ) |
| 12 | mulmod0 | |- ( ( N e. ZZ /\ M e. RR+ ) -> ( ( N x. M ) mod M ) = 0 ) |
|
| 13 | 11 12 | syl | |- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( ( N x. M ) mod M ) = 0 ) |
| 14 | 13 | oveq1d | |- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( ( ( N x. M ) mod M ) + A ) = ( 0 + A ) ) |
| 15 | recn | |- ( A e. RR -> A e. CC ) |
|
| 16 | 15 | addlidd | |- ( A e. RR -> ( 0 + A ) = A ) |
| 17 | 16 | 3ad2ant1 | |- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( 0 + A ) = A ) |
| 18 | 14 17 | eqtrd | |- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( ( ( N x. M ) mod M ) + A ) = A ) |
| 19 | 18 | oveq1d | |- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( ( ( ( N x. M ) mod M ) + A ) mod M ) = ( A mod M ) ) |
| 20 | 9 19 | eqtr3d | |- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( ( ( N x. M ) + A ) mod M ) = ( A mod M ) ) |