This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of the multiplication of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mullimcf.f | |- ( ph -> F : A --> CC ) |
|
| mullimcf.g | |- ( ph -> G : A --> CC ) |
||
| mullimcf.h | |- H = ( x e. A |-> ( ( F ` x ) x. ( G ` x ) ) ) |
||
| mullimcf.b | |- ( ph -> B e. ( F limCC D ) ) |
||
| mullimcf.c | |- ( ph -> C e. ( G limCC D ) ) |
||
| Assertion | mullimcf | |- ( ph -> ( B x. C ) e. ( H limCC D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mullimcf.f | |- ( ph -> F : A --> CC ) |
|
| 2 | mullimcf.g | |- ( ph -> G : A --> CC ) |
|
| 3 | mullimcf.h | |- H = ( x e. A |-> ( ( F ` x ) x. ( G ` x ) ) ) |
|
| 4 | mullimcf.b | |- ( ph -> B e. ( F limCC D ) ) |
|
| 5 | mullimcf.c | |- ( ph -> C e. ( G limCC D ) ) |
|
| 6 | limccl | |- ( F limCC D ) C_ CC |
|
| 7 | 6 4 | sselid | |- ( ph -> B e. CC ) |
| 8 | limccl | |- ( G limCC D ) C_ CC |
|
| 9 | 8 5 | sselid | |- ( ph -> C e. CC ) |
| 10 | 7 9 | mulcld | |- ( ph -> ( B x. C ) e. CC ) |
| 11 | simpr | |- ( ( ph /\ w e. RR+ ) -> w e. RR+ ) |
|
| 12 | 7 | adantr | |- ( ( ph /\ w e. RR+ ) -> B e. CC ) |
| 13 | 9 | adantr | |- ( ( ph /\ w e. RR+ ) -> C e. CC ) |
| 14 | mulcn2 | |- ( ( w e. RR+ /\ B e. CC /\ C e. CC ) -> E. a e. RR+ E. b e. RR+ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) |
|
| 15 | 11 12 13 14 | syl3anc | |- ( ( ph /\ w e. RR+ ) -> E. a e. RR+ E. b e. RR+ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) |
| 16 | 1 | fdmd | |- ( ph -> dom F = A ) |
| 17 | limcrcl | |- ( B e. ( F limCC D ) -> ( F : dom F --> CC /\ dom F C_ CC /\ D e. CC ) ) |
|
| 18 | 4 17 | syl | |- ( ph -> ( F : dom F --> CC /\ dom F C_ CC /\ D e. CC ) ) |
| 19 | 18 | simp2d | |- ( ph -> dom F C_ CC ) |
| 20 | 16 19 | eqsstrrd | |- ( ph -> A C_ CC ) |
| 21 | 18 | simp3d | |- ( ph -> D e. CC ) |
| 22 | 1 20 21 | ellimc3 | |- ( ph -> ( B e. ( F limCC D ) <-> ( B e. CC /\ A. a e. RR+ E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) ) ) |
| 23 | 4 22 | mpbid | |- ( ph -> ( B e. CC /\ A. a e. RR+ E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) ) |
| 24 | 23 | simprd | |- ( ph -> A. a e. RR+ E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) |
| 25 | 24 | r19.21bi | |- ( ( ph /\ a e. RR+ ) -> E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) |
| 26 | 25 | adantrr | |- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) |
| 27 | 2 20 21 | ellimc3 | |- ( ph -> ( C e. ( G limCC D ) <-> ( C e. CC /\ A. b e. RR+ E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) ) |
| 28 | 5 27 | mpbid | |- ( ph -> ( C e. CC /\ A. b e. RR+ E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 29 | 28 | simprd | |- ( ph -> A. b e. RR+ E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
| 30 | 29 | r19.21bi | |- ( ( ph /\ b e. RR+ ) -> E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
| 31 | 30 | adantrl | |- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
| 32 | reeanv | |- ( E. e e. RR+ E. f e. RR+ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) <-> ( E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
|
| 33 | 26 31 32 | sylanbrc | |- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. e e. RR+ E. f e. RR+ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 34 | ifcl | |- ( ( e e. RR+ /\ f e. RR+ ) -> if ( e <_ f , e , f ) e. RR+ ) |
|
| 35 | 34 | 3ad2ant2 | |- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> if ( e <_ f , e , f ) e. RR+ ) |
| 36 | nfv | |- F/ z ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) |
|
| 37 | nfv | |- F/ z ( e e. RR+ /\ f e. RR+ ) |
|
| 38 | nfra1 | |- F/ z A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) |
|
| 39 | nfra1 | |- F/ z A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) |
|
| 40 | 38 39 | nfan | |- F/ z ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
| 41 | 36 37 40 | nf3an | |- F/ z ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 42 | simp11l | |- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ph ) |
|
| 43 | simp1rl | |- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> a e. RR+ ) |
|
| 44 | 43 | 3ad2ant1 | |- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> a e. RR+ ) |
| 45 | 42 44 | jca | |- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( ph /\ a e. RR+ ) ) |
| 46 | simp12 | |- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( e e. RR+ /\ f e. RR+ ) ) |
|
| 47 | simp13l | |- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) |
|
| 48 | 45 46 47 | jca31 | |- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) ) |
| 49 | simp1r | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) |
|
| 50 | simp2 | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> z e. A ) |
|
| 51 | simp3l | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> z =/= D ) |
|
| 52 | simplll | |- ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) -> ph ) |
|
| 53 | 52 | 3ad2ant1 | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ph ) |
| 54 | simp1lr | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( e e. RR+ /\ f e. RR+ ) ) |
|
| 55 | simp3r | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) |
|
| 56 | simp1l | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ph ) |
|
| 57 | simp2 | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> z e. A ) |
|
| 58 | 20 | sselda | |- ( ( ph /\ z e. A ) -> z e. CC ) |
| 59 | 56 57 58 | syl2anc | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> z e. CC ) |
| 60 | 56 21 | syl | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> D e. CC ) |
| 61 | 59 60 | subcld | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( z - D ) e. CC ) |
| 62 | 61 | abscld | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( abs ` ( z - D ) ) e. RR ) |
| 63 | rpre | |- ( e e. RR+ -> e e. RR ) |
|
| 64 | 63 | ad2antrl | |- ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) -> e e. RR ) |
| 65 | 64 | 3ad2ant1 | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> e e. RR ) |
| 66 | rpre | |- ( f e. RR+ -> f e. RR ) |
|
| 67 | 66 | ad2antll | |- ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) -> f e. RR ) |
| 68 | 67 | 3ad2ant1 | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> f e. RR ) |
| 69 | 65 68 | ifcld | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> if ( e <_ f , e , f ) e. RR ) |
| 70 | simp3 | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) |
|
| 71 | min1 | |- ( ( e e. RR /\ f e. RR ) -> if ( e <_ f , e , f ) <_ e ) |
|
| 72 | 65 68 71 | syl2anc | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> if ( e <_ f , e , f ) <_ e ) |
| 73 | 62 69 65 70 72 | ltletrd | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( abs ` ( z - D ) ) < e ) |
| 74 | 53 54 50 55 73 | syl211anc | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( z - D ) ) < e ) |
| 75 | 51 74 | jca | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( z =/= D /\ ( abs ` ( z - D ) ) < e ) ) |
| 76 | rsp | |- ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) ) |
|
| 77 | 49 50 75 76 | syl3c | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) |
| 78 | 48 77 | syld3an1 | |- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) |
| 79 | simp1l | |- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> ph ) |
|
| 80 | 79 43 | jca | |- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> ( ph /\ a e. RR+ ) ) |
| 81 | simp2 | |- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> ( e e. RR+ /\ f e. RR+ ) ) |
|
| 82 | simp3r | |- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
|
| 83 | 80 81 82 | jca31 | |- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 84 | simp1r | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
|
| 85 | simp2 | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> z e. A ) |
|
| 86 | simp3l | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> z =/= D ) |
|
| 87 | simplll | |- ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) -> ph ) |
|
| 88 | 87 | 3ad2ant1 | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ph ) |
| 89 | simp1lr | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( e e. RR+ /\ f e. RR+ ) ) |
|
| 90 | simp3r | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) |
|
| 91 | min2 | |- ( ( e e. RR /\ f e. RR ) -> if ( e <_ f , e , f ) <_ f ) |
|
| 92 | 65 68 91 | syl2anc | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> if ( e <_ f , e , f ) <_ f ) |
| 93 | 62 69 68 70 92 | ltletrd | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( abs ` ( z - D ) ) < f ) |
| 94 | 88 89 85 90 93 | syl211anc | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( z - D ) ) < f ) |
| 95 | 86 94 | jca | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( z =/= D /\ ( abs ` ( z - D ) ) < f ) ) |
| 96 | rsp | |- ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
|
| 97 | 84 85 95 96 | syl3c | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) |
| 98 | 83 97 | syl3an1 | |- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) |
| 99 | 78 98 | jca | |- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
| 100 | 99 | 3exp | |- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) ) |
| 101 | 41 100 | ralrimi | |- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 102 | brimralrspcev | |- ( ( if ( e <_ f , e , f ) e. RR+ /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
|
| 103 | 35 101 102 | syl2anc | |- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 104 | 103 | 3exp | |- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> ( ( e e. RR+ /\ f e. RR+ ) -> ( ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) ) ) |
| 105 | 104 | rexlimdvv | |- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> ( E. e e. RR+ E. f e. RR+ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) ) |
| 106 | 33 105 | mpd | |- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 107 | 106 | adantlr | |- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 108 | 107 | 3adant3 | |- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 109 | nfv | |- F/ z ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) |
|
| 110 | nfra1 | |- F/ z A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
|
| 111 | 109 110 | nfan | |- F/ z ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 112 | simp1l | |- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) -> ph ) |
|
| 113 | 112 | ad2antrr | |- ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> ph ) |
| 114 | 113 | 3ad2ant1 | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ph ) |
| 115 | simp2 | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> z e. A ) |
|
| 116 | fveq2 | |- ( x = z -> ( F ` x ) = ( F ` z ) ) |
|
| 117 | fveq2 | |- ( x = z -> ( G ` x ) = ( G ` z ) ) |
|
| 118 | 116 117 | oveq12d | |- ( x = z -> ( ( F ` x ) x. ( G ` x ) ) = ( ( F ` z ) x. ( G ` z ) ) ) |
| 119 | simpr | |- ( ( ph /\ z e. A ) -> z e. A ) |
|
| 120 | 1 | ffvelcdmda | |- ( ( ph /\ z e. A ) -> ( F ` z ) e. CC ) |
| 121 | 2 | ffvelcdmda | |- ( ( ph /\ z e. A ) -> ( G ` z ) e. CC ) |
| 122 | 120 121 | mulcld | |- ( ( ph /\ z e. A ) -> ( ( F ` z ) x. ( G ` z ) ) e. CC ) |
| 123 | 3 118 119 122 | fvmptd3 | |- ( ( ph /\ z e. A ) -> ( H ` z ) = ( ( F ` z ) x. ( G ` z ) ) ) |
| 124 | 123 | fvoveq1d | |- ( ( ph /\ z e. A ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) = ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( B x. C ) ) ) ) |
| 125 | 114 115 124 | syl2anc | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) = ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( B x. C ) ) ) ) |
| 126 | 120 121 | jca | |- ( ( ph /\ z e. A ) -> ( ( F ` z ) e. CC /\ ( G ` z ) e. CC ) ) |
| 127 | 114 115 126 | syl2anc | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( ( F ` z ) e. CC /\ ( G ` z ) e. CC ) ) |
| 128 | simpll3 | |- ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) |
|
| 129 | 128 | 3ad2ant1 | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) |
| 130 | rsp | |- ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) ) |
|
| 131 | 130 | 3imp | |- ( ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
| 132 | 131 | 3adant1l | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
| 133 | fvoveq1 | |- ( c = ( F ` z ) -> ( abs ` ( c - B ) ) = ( abs ` ( ( F ` z ) - B ) ) ) |
|
| 134 | 133 | breq1d | |- ( c = ( F ` z ) -> ( ( abs ` ( c - B ) ) < a <-> ( abs ` ( ( F ` z ) - B ) ) < a ) ) |
| 135 | 134 | anbi1d | |- ( c = ( F ` z ) -> ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) <-> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) ) ) |
| 136 | oveq1 | |- ( c = ( F ` z ) -> ( c x. d ) = ( ( F ` z ) x. d ) ) |
|
| 137 | 136 | fvoveq1d | |- ( c = ( F ` z ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) = ( abs ` ( ( ( F ` z ) x. d ) - ( B x. C ) ) ) ) |
| 138 | 137 | breq1d | |- ( c = ( F ` z ) -> ( ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w <-> ( abs ` ( ( ( F ` z ) x. d ) - ( B x. C ) ) ) < w ) ) |
| 139 | 135 138 | imbi12d | |- ( c = ( F ` z ) -> ( ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) <-> ( ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( ( F ` z ) x. d ) - ( B x. C ) ) ) < w ) ) ) |
| 140 | fvoveq1 | |- ( d = ( G ` z ) -> ( abs ` ( d - C ) ) = ( abs ` ( ( G ` z ) - C ) ) ) |
|
| 141 | 140 | breq1d | |- ( d = ( G ` z ) -> ( ( abs ` ( d - C ) ) < b <-> ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
| 142 | 141 | anbi2d | |- ( d = ( G ` z ) -> ( ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) <-> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 143 | oveq2 | |- ( d = ( G ` z ) -> ( ( F ` z ) x. d ) = ( ( F ` z ) x. ( G ` z ) ) ) |
|
| 144 | 143 | fvoveq1d | |- ( d = ( G ` z ) -> ( abs ` ( ( ( F ` z ) x. d ) - ( B x. C ) ) ) = ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( B x. C ) ) ) ) |
| 145 | 144 | breq1d | |- ( d = ( G ` z ) -> ( ( abs ` ( ( ( F ` z ) x. d ) - ( B x. C ) ) ) < w <-> ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( B x. C ) ) ) < w ) ) |
| 146 | 142 145 | imbi12d | |- ( d = ( G ` z ) -> ( ( ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( ( F ` z ) x. d ) - ( B x. C ) ) ) < w ) <-> ( ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) -> ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( B x. C ) ) ) < w ) ) ) |
| 147 | 139 146 | rspc2v | |- ( ( ( F ` z ) e. CC /\ ( G ` z ) e. CC ) -> ( A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) -> ( ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) -> ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( B x. C ) ) ) < w ) ) ) |
| 148 | 127 129 132 147 | syl3c | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( B x. C ) ) ) < w ) |
| 149 | 125 148 | eqbrtrd | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) |
| 150 | 149 | 3exp | |- ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) ) |
| 151 | 111 150 | ralrimi | |- ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) |
| 152 | 151 | ex | |- ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) -> ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) ) |
| 153 | 152 | reximdva | |- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) -> ( E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) ) |
| 154 | 108 153 | mpd | |- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) |
| 155 | 154 | 3exp | |- ( ( ph /\ w e. RR+ ) -> ( ( a e. RR+ /\ b e. RR+ ) -> ( A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) ) ) |
| 156 | 155 | rexlimdvv | |- ( ( ph /\ w e. RR+ ) -> ( E. a e. RR+ E. b e. RR+ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) ) |
| 157 | 15 156 | mpd | |- ( ( ph /\ w e. RR+ ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) |
| 158 | 157 | ralrimiva | |- ( ph -> A. w e. RR+ E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) |
| 159 | 1 | ffvelcdmda | |- ( ( ph /\ x e. A ) -> ( F ` x ) e. CC ) |
| 160 | 2 | ffvelcdmda | |- ( ( ph /\ x e. A ) -> ( G ` x ) e. CC ) |
| 161 | 159 160 | mulcld | |- ( ( ph /\ x e. A ) -> ( ( F ` x ) x. ( G ` x ) ) e. CC ) |
| 162 | 161 3 | fmptd | |- ( ph -> H : A --> CC ) |
| 163 | 162 20 21 | ellimc3 | |- ( ph -> ( ( B x. C ) e. ( H limCC D ) <-> ( ( B x. C ) e. CC /\ A. w e. RR+ E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) ) ) |
| 164 | 10 158 163 | mpbir2and | |- ( ph -> ( B x. C ) e. ( H limCC D ) ) |