This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of constant function. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | constlimc.f | |- F = ( x e. A |-> B ) |
|
| constlimc.a | |- ( ph -> A C_ CC ) |
||
| constlimc.b | |- ( ph -> B e. CC ) |
||
| constlimc.c | |- ( ph -> C e. CC ) |
||
| Assertion | constlimc | |- ( ph -> B e. ( F limCC C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constlimc.f | |- F = ( x e. A |-> B ) |
|
| 2 | constlimc.a | |- ( ph -> A C_ CC ) |
|
| 3 | constlimc.b | |- ( ph -> B e. CC ) |
|
| 4 | constlimc.c | |- ( ph -> C e. CC ) |
|
| 5 | 1rp | |- 1 e. RR+ |
|
| 6 | 5 | a1i | |- ( ( ph /\ y e. RR+ ) -> 1 e. RR+ ) |
| 7 | simpr | |- ( ( ph /\ v e. A ) -> v e. A ) |
|
| 8 | vex | |- v e. _V |
|
| 9 | nfcv | |- F/_ x B |
|
| 10 | csbtt | |- ( ( v e. _V /\ F/_ x B ) -> [_ v / x ]_ B = B ) |
|
| 11 | 8 9 10 | mp2an | |- [_ v / x ]_ B = B |
| 12 | 11 3 | eqeltrid | |- ( ph -> [_ v / x ]_ B e. CC ) |
| 13 | 12 | adantr | |- ( ( ph /\ v e. A ) -> [_ v / x ]_ B e. CC ) |
| 14 | 1 | fvmpts | |- ( ( v e. A /\ [_ v / x ]_ B e. CC ) -> ( F ` v ) = [_ v / x ]_ B ) |
| 15 | 7 13 14 | syl2anc | |- ( ( ph /\ v e. A ) -> ( F ` v ) = [_ v / x ]_ B ) |
| 16 | 15 | oveq1d | |- ( ( ph /\ v e. A ) -> ( ( F ` v ) - B ) = ( [_ v / x ]_ B - B ) ) |
| 17 | 11 | oveq1i | |- ( [_ v / x ]_ B - B ) = ( B - B ) |
| 18 | 16 17 | eqtrdi | |- ( ( ph /\ v e. A ) -> ( ( F ` v ) - B ) = ( B - B ) ) |
| 19 | 18 | fveq2d | |- ( ( ph /\ v e. A ) -> ( abs ` ( ( F ` v ) - B ) ) = ( abs ` ( B - B ) ) ) |
| 20 | 3 | subidd | |- ( ph -> ( B - B ) = 0 ) |
| 21 | 20 | fveq2d | |- ( ph -> ( abs ` ( B - B ) ) = ( abs ` 0 ) ) |
| 22 | 21 | adantr | |- ( ( ph /\ v e. A ) -> ( abs ` ( B - B ) ) = ( abs ` 0 ) ) |
| 23 | abs0 | |- ( abs ` 0 ) = 0 |
|
| 24 | 23 | a1i | |- ( ( ph /\ v e. A ) -> ( abs ` 0 ) = 0 ) |
| 25 | 19 22 24 | 3eqtrd | |- ( ( ph /\ v e. A ) -> ( abs ` ( ( F ` v ) - B ) ) = 0 ) |
| 26 | 25 | adantlr | |- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( abs ` ( ( F ` v ) - B ) ) = 0 ) |
| 27 | rpgt0 | |- ( y e. RR+ -> 0 < y ) |
|
| 28 | 27 | ad2antlr | |- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> 0 < y ) |
| 29 | 26 28 | eqbrtrd | |- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( abs ` ( ( F ` v ) - B ) ) < y ) |
| 30 | 29 | a1d | |- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( ( v =/= C /\ ( abs ` ( v - C ) ) < 1 ) -> ( abs ` ( ( F ` v ) - B ) ) < y ) ) |
| 31 | 30 | ralrimiva | |- ( ( ph /\ y e. RR+ ) -> A. v e. A ( ( v =/= C /\ ( abs ` ( v - C ) ) < 1 ) -> ( abs ` ( ( F ` v ) - B ) ) < y ) ) |
| 32 | brimralrspcev | |- ( ( 1 e. RR+ /\ A. v e. A ( ( v =/= C /\ ( abs ` ( v - C ) ) < 1 ) -> ( abs ` ( ( F ` v ) - B ) ) < y ) ) -> E. w e. RR+ A. v e. A ( ( v =/= C /\ ( abs ` ( v - C ) ) < w ) -> ( abs ` ( ( F ` v ) - B ) ) < y ) ) |
|
| 33 | 6 31 32 | syl2anc | |- ( ( ph /\ y e. RR+ ) -> E. w e. RR+ A. v e. A ( ( v =/= C /\ ( abs ` ( v - C ) ) < w ) -> ( abs ` ( ( F ` v ) - B ) ) < y ) ) |
| 34 | 33 | ralrimiva | |- ( ph -> A. y e. RR+ E. w e. RR+ A. v e. A ( ( v =/= C /\ ( abs ` ( v - C ) ) < w ) -> ( abs ` ( ( F ` v ) - B ) ) < y ) ) |
| 35 | 3 | adantr | |- ( ( ph /\ x e. A ) -> B e. CC ) |
| 36 | 35 1 | fmptd | |- ( ph -> F : A --> CC ) |
| 37 | 36 2 4 | ellimc3 | |- ( ph -> ( B e. ( F limCC C ) <-> ( B e. CC /\ A. y e. RR+ E. w e. RR+ A. v e. A ( ( v =/= C /\ ( abs ` ( v - C ) ) < w ) -> ( abs ` ( ( F ` v ) - B ) ) < y ) ) ) ) |
| 38 | 3 34 37 | mpbir2and | |- ( ph -> B e. ( F limCC C ) ) |