This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of the product of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mullimc.f | |- F = ( x e. A |-> B ) |
|
| mullimc.g | |- G = ( x e. A |-> C ) |
||
| mullimc.h | |- H = ( x e. A |-> ( B x. C ) ) |
||
| mullimc.b | |- ( ( ph /\ x e. A ) -> B e. CC ) |
||
| mullimc.c | |- ( ( ph /\ x e. A ) -> C e. CC ) |
||
| mullimc.x | |- ( ph -> X e. ( F limCC D ) ) |
||
| mullimc.y | |- ( ph -> Y e. ( G limCC D ) ) |
||
| Assertion | mullimc | |- ( ph -> ( X x. Y ) e. ( H limCC D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mullimc.f | |- F = ( x e. A |-> B ) |
|
| 2 | mullimc.g | |- G = ( x e. A |-> C ) |
|
| 3 | mullimc.h | |- H = ( x e. A |-> ( B x. C ) ) |
|
| 4 | mullimc.b | |- ( ( ph /\ x e. A ) -> B e. CC ) |
|
| 5 | mullimc.c | |- ( ( ph /\ x e. A ) -> C e. CC ) |
|
| 6 | mullimc.x | |- ( ph -> X e. ( F limCC D ) ) |
|
| 7 | mullimc.y | |- ( ph -> Y e. ( G limCC D ) ) |
|
| 8 | limccl | |- ( F limCC D ) C_ CC |
|
| 9 | 8 6 | sselid | |- ( ph -> X e. CC ) |
| 10 | limccl | |- ( G limCC D ) C_ CC |
|
| 11 | 10 7 | sselid | |- ( ph -> Y e. CC ) |
| 12 | 9 11 | mulcld | |- ( ph -> ( X x. Y ) e. CC ) |
| 13 | simpr | |- ( ( ph /\ w e. RR+ ) -> w e. RR+ ) |
|
| 14 | 9 | adantr | |- ( ( ph /\ w e. RR+ ) -> X e. CC ) |
| 15 | 11 | adantr | |- ( ( ph /\ w e. RR+ ) -> Y e. CC ) |
| 16 | mulcn2 | |- ( ( w e. RR+ /\ X e. CC /\ Y e. CC ) -> E. a e. RR+ E. b e. RR+ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) |
|
| 17 | 13 14 15 16 | syl3anc | |- ( ( ph /\ w e. RR+ ) -> E. a e. RR+ E. b e. RR+ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) |
| 18 | 4 1 | fmptd | |- ( ph -> F : A --> CC ) |
| 19 | 1 4 | dmmptd | |- ( ph -> dom F = A ) |
| 20 | limcrcl | |- ( X e. ( F limCC D ) -> ( F : dom F --> CC /\ dom F C_ CC /\ D e. CC ) ) |
|
| 21 | 6 20 | syl | |- ( ph -> ( F : dom F --> CC /\ dom F C_ CC /\ D e. CC ) ) |
| 22 | 21 | simp2d | |- ( ph -> dom F C_ CC ) |
| 23 | 19 22 | eqsstrrd | |- ( ph -> A C_ CC ) |
| 24 | 21 | simp3d | |- ( ph -> D e. CC ) |
| 25 | 18 23 24 | ellimc3 | |- ( ph -> ( X e. ( F limCC D ) <-> ( X e. CC /\ A. a e. RR+ E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) ) ) |
| 26 | 6 25 | mpbid | |- ( ph -> ( X e. CC /\ A. a e. RR+ E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) ) |
| 27 | 26 | simprd | |- ( ph -> A. a e. RR+ E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) |
| 28 | 27 | r19.21bi | |- ( ( ph /\ a e. RR+ ) -> E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) |
| 29 | 28 | adantrr | |- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) |
| 30 | 5 2 | fmptd | |- ( ph -> G : A --> CC ) |
| 31 | 30 23 24 | ellimc3 | |- ( ph -> ( Y e. ( G limCC D ) <-> ( Y e. CC /\ A. b e. RR+ E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) ) |
| 32 | 7 31 | mpbid | |- ( ph -> ( Y e. CC /\ A. b e. RR+ E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 33 | 32 | simprd | |- ( ph -> A. b e. RR+ E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) |
| 34 | 33 | r19.21bi | |- ( ( ph /\ b e. RR+ ) -> E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) |
| 35 | 34 | adantrl | |- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) |
| 36 | reeanv | |- ( E. e e. RR+ E. f e. RR+ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) <-> ( E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
|
| 37 | 29 35 36 | sylanbrc | |- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. e e. RR+ E. f e. RR+ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 38 | ifcl | |- ( ( e e. RR+ /\ f e. RR+ ) -> if ( e <_ f , e , f ) e. RR+ ) |
|
| 39 | 38 | 3ad2ant2 | |- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> if ( e <_ f , e , f ) e. RR+ ) |
| 40 | nfv | |- F/ z ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) |
|
| 41 | nfv | |- F/ z ( e e. RR+ /\ f e. RR+ ) |
|
| 42 | nfra1 | |- F/ z A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) |
|
| 43 | nfra1 | |- F/ z A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) |
|
| 44 | 42 43 | nfan | |- F/ z ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) |
| 45 | 40 41 44 | nf3an | |- F/ z ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 46 | simp11l | |- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ph ) |
|
| 47 | simp1rl | |- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> a e. RR+ ) |
|
| 48 | 47 | 3ad2ant1 | |- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> a e. RR+ ) |
| 49 | 46 48 | jca | |- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( ph /\ a e. RR+ ) ) |
| 50 | simp12 | |- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( e e. RR+ /\ f e. RR+ ) ) |
|
| 51 | simp13l | |- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) |
|
| 52 | 49 50 51 | jca31 | |- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) ) |
| 53 | simp1r | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) |
|
| 54 | simp2 | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> z e. A ) |
|
| 55 | simp3l | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> z =/= D ) |
|
| 56 | simplll | |- ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) -> ph ) |
|
| 57 | 56 | 3ad2ant1 | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ph ) |
| 58 | simp1lr | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( e e. RR+ /\ f e. RR+ ) ) |
|
| 59 | simp3r | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) |
|
| 60 | simp1l | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ph ) |
|
| 61 | simp2 | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> z e. A ) |
|
| 62 | 23 | sselda | |- ( ( ph /\ z e. A ) -> z e. CC ) |
| 63 | 60 61 62 | syl2anc | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> z e. CC ) |
| 64 | 60 24 | syl | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> D e. CC ) |
| 65 | 63 64 | subcld | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( z - D ) e. CC ) |
| 66 | 65 | abscld | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( abs ` ( z - D ) ) e. RR ) |
| 67 | rpre | |- ( e e. RR+ -> e e. RR ) |
|
| 68 | 67 | ad2antrl | |- ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) -> e e. RR ) |
| 69 | 68 | 3ad2ant1 | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> e e. RR ) |
| 70 | rpre | |- ( f e. RR+ -> f e. RR ) |
|
| 71 | 70 | ad2antll | |- ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) -> f e. RR ) |
| 72 | 71 | 3ad2ant1 | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> f e. RR ) |
| 73 | 69 72 | ifcld | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> if ( e <_ f , e , f ) e. RR ) |
| 74 | simp3 | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) |
|
| 75 | min1 | |- ( ( e e. RR /\ f e. RR ) -> if ( e <_ f , e , f ) <_ e ) |
|
| 76 | 69 72 75 | syl2anc | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> if ( e <_ f , e , f ) <_ e ) |
| 77 | 66 73 69 74 76 | ltletrd | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( abs ` ( z - D ) ) < e ) |
| 78 | 57 58 54 59 77 | syl211anc | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( z - D ) ) < e ) |
| 79 | 55 78 | jca | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( z =/= D /\ ( abs ` ( z - D ) ) < e ) ) |
| 80 | rsp | |- ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) ) |
|
| 81 | 53 54 79 80 | syl3c | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) |
| 82 | 52 81 | syld3an1 | |- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) |
| 83 | simp1l | |- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> ph ) |
|
| 84 | 83 47 | jca | |- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> ( ph /\ a e. RR+ ) ) |
| 85 | simp2 | |- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> ( e e. RR+ /\ f e. RR+ ) ) |
|
| 86 | simp3r | |- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) |
|
| 87 | 84 85 86 | jca31 | |- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 88 | simp1r | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) |
|
| 89 | simp2 | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> z e. A ) |
|
| 90 | simp3l | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> z =/= D ) |
|
| 91 | simplll | |- ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) -> ph ) |
|
| 92 | 91 | 3ad2ant1 | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ph ) |
| 93 | simp1lr | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( e e. RR+ /\ f e. RR+ ) ) |
|
| 94 | simp3r | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) |
|
| 95 | min2 | |- ( ( e e. RR /\ f e. RR ) -> if ( e <_ f , e , f ) <_ f ) |
|
| 96 | 69 72 95 | syl2anc | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> if ( e <_ f , e , f ) <_ f ) |
| 97 | 66 73 72 74 96 | ltletrd | |- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( abs ` ( z - D ) ) < f ) |
| 98 | 92 93 89 94 97 | syl211anc | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( z - D ) ) < f ) |
| 99 | 90 98 | jca | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( z =/= D /\ ( abs ` ( z - D ) ) < f ) ) |
| 100 | rsp | |- ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
|
| 101 | 88 89 99 100 | syl3c | |- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) |
| 102 | 87 101 | syl3an1 | |- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) |
| 103 | 82 102 | jca | |- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) |
| 104 | 103 | 3exp | |- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) ) |
| 105 | 45 104 | ralrimi | |- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 106 | brimralrspcev | |- ( ( if ( e <_ f , e , f ) e. RR+ /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
|
| 107 | 39 105 106 | syl2anc | |- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 108 | 107 | 3exp | |- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> ( ( e e. RR+ /\ f e. RR+ ) -> ( ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) ) ) |
| 109 | 108 | rexlimdvv | |- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> ( E. e e. RR+ E. f e. RR+ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) ) |
| 110 | 37 109 | mpd | |- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 111 | 110 | adantlr | |- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 112 | 111 | 3adant3 | |- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 113 | nfv | |- F/ z ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) |
|
| 114 | nfra1 | |- F/ z A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) |
|
| 115 | 113 114 | nfan | |- F/ z ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 116 | simp1l | |- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) -> ph ) |
|
| 117 | 116 | ad2antrr | |- ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> ph ) |
| 118 | 117 | 3ad2ant1 | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ph ) |
| 119 | simp2 | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> z e. A ) |
|
| 120 | nfv | |- F/ x ( ph /\ z e. A ) |
|
| 121 | nfmpt1 | |- F/_ x ( x e. A |-> ( B x. C ) ) |
|
| 122 | 3 121 | nfcxfr | |- F/_ x H |
| 123 | nfcv | |- F/_ x z |
|
| 124 | 122 123 | nffv | |- F/_ x ( H ` z ) |
| 125 | nfmpt1 | |- F/_ x ( x e. A |-> B ) |
|
| 126 | 1 125 | nfcxfr | |- F/_ x F |
| 127 | 126 123 | nffv | |- F/_ x ( F ` z ) |
| 128 | nfcv | |- F/_ x x. |
|
| 129 | nfmpt1 | |- F/_ x ( x e. A |-> C ) |
|
| 130 | 2 129 | nfcxfr | |- F/_ x G |
| 131 | 130 123 | nffv | |- F/_ x ( G ` z ) |
| 132 | 127 128 131 | nfov | |- F/_ x ( ( F ` z ) x. ( G ` z ) ) |
| 133 | 124 132 | nfeq | |- F/ x ( H ` z ) = ( ( F ` z ) x. ( G ` z ) ) |
| 134 | 120 133 | nfim | |- F/ x ( ( ph /\ z e. A ) -> ( H ` z ) = ( ( F ` z ) x. ( G ` z ) ) ) |
| 135 | eleq1w | |- ( x = z -> ( x e. A <-> z e. A ) ) |
|
| 136 | 135 | anbi2d | |- ( x = z -> ( ( ph /\ x e. A ) <-> ( ph /\ z e. A ) ) ) |
| 137 | fveq2 | |- ( x = z -> ( H ` x ) = ( H ` z ) ) |
|
| 138 | fveq2 | |- ( x = z -> ( F ` x ) = ( F ` z ) ) |
|
| 139 | fveq2 | |- ( x = z -> ( G ` x ) = ( G ` z ) ) |
|
| 140 | 138 139 | oveq12d | |- ( x = z -> ( ( F ` x ) x. ( G ` x ) ) = ( ( F ` z ) x. ( G ` z ) ) ) |
| 141 | 137 140 | eqeq12d | |- ( x = z -> ( ( H ` x ) = ( ( F ` x ) x. ( G ` x ) ) <-> ( H ` z ) = ( ( F ` z ) x. ( G ` z ) ) ) ) |
| 142 | 136 141 | imbi12d | |- ( x = z -> ( ( ( ph /\ x e. A ) -> ( H ` x ) = ( ( F ` x ) x. ( G ` x ) ) ) <-> ( ( ph /\ z e. A ) -> ( H ` z ) = ( ( F ` z ) x. ( G ` z ) ) ) ) ) |
| 143 | simpr | |- ( ( ph /\ x e. A ) -> x e. A ) |
|
| 144 | 4 5 | mulcld | |- ( ( ph /\ x e. A ) -> ( B x. C ) e. CC ) |
| 145 | 3 | fvmpt2 | |- ( ( x e. A /\ ( B x. C ) e. CC ) -> ( H ` x ) = ( B x. C ) ) |
| 146 | 143 144 145 | syl2anc | |- ( ( ph /\ x e. A ) -> ( H ` x ) = ( B x. C ) ) |
| 147 | 1 | fvmpt2 | |- ( ( x e. A /\ B e. CC ) -> ( F ` x ) = B ) |
| 148 | 143 4 147 | syl2anc | |- ( ( ph /\ x e. A ) -> ( F ` x ) = B ) |
| 149 | 148 | eqcomd | |- ( ( ph /\ x e. A ) -> B = ( F ` x ) ) |
| 150 | 2 | fvmpt2 | |- ( ( x e. A /\ C e. CC ) -> ( G ` x ) = C ) |
| 151 | 143 5 150 | syl2anc | |- ( ( ph /\ x e. A ) -> ( G ` x ) = C ) |
| 152 | 151 | eqcomd | |- ( ( ph /\ x e. A ) -> C = ( G ` x ) ) |
| 153 | 149 152 | oveq12d | |- ( ( ph /\ x e. A ) -> ( B x. C ) = ( ( F ` x ) x. ( G ` x ) ) ) |
| 154 | 146 153 | eqtrd | |- ( ( ph /\ x e. A ) -> ( H ` x ) = ( ( F ` x ) x. ( G ` x ) ) ) |
| 155 | 134 142 154 | chvarfv | |- ( ( ph /\ z e. A ) -> ( H ` z ) = ( ( F ` z ) x. ( G ` z ) ) ) |
| 156 | 155 | fvoveq1d | |- ( ( ph /\ z e. A ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) = ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( X x. Y ) ) ) ) |
| 157 | 118 119 156 | syl2anc | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) = ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( X x. Y ) ) ) ) |
| 158 | 18 | ffvelcdmda | |- ( ( ph /\ z e. A ) -> ( F ` z ) e. CC ) |
| 159 | 30 | ffvelcdmda | |- ( ( ph /\ z e. A ) -> ( G ` z ) e. CC ) |
| 160 | 158 159 | jca | |- ( ( ph /\ z e. A ) -> ( ( F ` z ) e. CC /\ ( G ` z ) e. CC ) ) |
| 161 | 118 119 160 | syl2anc | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( ( F ` z ) e. CC /\ ( G ` z ) e. CC ) ) |
| 162 | simpll3 | |- ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) |
|
| 163 | 162 | 3ad2ant1 | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) |
| 164 | rsp | |- ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) ) |
|
| 165 | 164 | 3imp | |- ( ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) |
| 166 | 165 | 3adant1l | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) |
| 167 | fvoveq1 | |- ( c = ( F ` z ) -> ( abs ` ( c - X ) ) = ( abs ` ( ( F ` z ) - X ) ) ) |
|
| 168 | 167 | breq1d | |- ( c = ( F ` z ) -> ( ( abs ` ( c - X ) ) < a <-> ( abs ` ( ( F ` z ) - X ) ) < a ) ) |
| 169 | 168 | anbi1d | |- ( c = ( F ` z ) -> ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) <-> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) ) ) |
| 170 | oveq1 | |- ( c = ( F ` z ) -> ( c x. d ) = ( ( F ` z ) x. d ) ) |
|
| 171 | 170 | fvoveq1d | |- ( c = ( F ` z ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) = ( abs ` ( ( ( F ` z ) x. d ) - ( X x. Y ) ) ) ) |
| 172 | 171 | breq1d | |- ( c = ( F ` z ) -> ( ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w <-> ( abs ` ( ( ( F ` z ) x. d ) - ( X x. Y ) ) ) < w ) ) |
| 173 | 169 172 | imbi12d | |- ( c = ( F ` z ) -> ( ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) <-> ( ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( ( F ` z ) x. d ) - ( X x. Y ) ) ) < w ) ) ) |
| 174 | fvoveq1 | |- ( d = ( G ` z ) -> ( abs ` ( d - Y ) ) = ( abs ` ( ( G ` z ) - Y ) ) ) |
|
| 175 | 174 | breq1d | |- ( d = ( G ` z ) -> ( ( abs ` ( d - Y ) ) < b <-> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) |
| 176 | 175 | anbi2d | |- ( d = ( G ` z ) -> ( ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) <-> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 177 | oveq2 | |- ( d = ( G ` z ) -> ( ( F ` z ) x. d ) = ( ( F ` z ) x. ( G ` z ) ) ) |
|
| 178 | 177 | fvoveq1d | |- ( d = ( G ` z ) -> ( abs ` ( ( ( F ` z ) x. d ) - ( X x. Y ) ) ) = ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( X x. Y ) ) ) ) |
| 179 | 178 | breq1d | |- ( d = ( G ` z ) -> ( ( abs ` ( ( ( F ` z ) x. d ) - ( X x. Y ) ) ) < w <-> ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( X x. Y ) ) ) < w ) ) |
| 180 | 176 179 | imbi12d | |- ( d = ( G ` z ) -> ( ( ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( ( F ` z ) x. d ) - ( X x. Y ) ) ) < w ) <-> ( ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) -> ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( X x. Y ) ) ) < w ) ) ) |
| 181 | 173 180 | rspc2v | |- ( ( ( F ` z ) e. CC /\ ( G ` z ) e. CC ) -> ( A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) -> ( ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) -> ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( X x. Y ) ) ) < w ) ) ) |
| 182 | 161 163 166 181 | syl3c | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( X x. Y ) ) ) < w ) |
| 183 | 157 182 | eqbrtrd | |- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) |
| 184 | 183 | 3exp | |- ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) ) |
| 185 | 115 184 | ralrimi | |- ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) |
| 186 | 185 | ex | |- ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) -> ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) ) |
| 187 | 186 | reximdva | |- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) -> ( E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) ) |
| 188 | 112 187 | mpd | |- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) |
| 189 | 188 | 3exp | |- ( ( ph /\ w e. RR+ ) -> ( ( a e. RR+ /\ b e. RR+ ) -> ( A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) ) ) |
| 190 | 189 | rexlimdvv | |- ( ( ph /\ w e. RR+ ) -> ( E. a e. RR+ E. b e. RR+ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) ) |
| 191 | 17 190 | mpd | |- ( ( ph /\ w e. RR+ ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) |
| 192 | 191 | ralrimiva | |- ( ph -> A. w e. RR+ E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) |
| 193 | 144 3 | fmptd | |- ( ph -> H : A --> CC ) |
| 194 | 193 23 24 | ellimc3 | |- ( ph -> ( ( X x. Y ) e. ( H limCC D ) <-> ( ( X x. Y ) e. CC /\ A. w e. RR+ E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) ) ) |
| 195 | 12 192 194 | mpbir2and | |- ( ph -> ( X x. Y ) e. ( H limCC D ) ) |