This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two negative numbers is positive. (Contributed by Jeff Hankins, 8-Jun-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mullt0 | |- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ B < 0 ) ) -> 0 < ( A x. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 2 | 1 | adantr | |- ( ( A e. RR /\ A < 0 ) -> -u A e. RR ) |
| 3 | lt0neg1 | |- ( A e. RR -> ( A < 0 <-> 0 < -u A ) ) |
|
| 4 | 3 | biimpa | |- ( ( A e. RR /\ A < 0 ) -> 0 < -u A ) |
| 5 | 2 4 | jca | |- ( ( A e. RR /\ A < 0 ) -> ( -u A e. RR /\ 0 < -u A ) ) |
| 6 | renegcl | |- ( B e. RR -> -u B e. RR ) |
|
| 7 | 6 | adantr | |- ( ( B e. RR /\ B < 0 ) -> -u B e. RR ) |
| 8 | lt0neg1 | |- ( B e. RR -> ( B < 0 <-> 0 < -u B ) ) |
|
| 9 | 8 | biimpa | |- ( ( B e. RR /\ B < 0 ) -> 0 < -u B ) |
| 10 | 7 9 | jca | |- ( ( B e. RR /\ B < 0 ) -> ( -u B e. RR /\ 0 < -u B ) ) |
| 11 | mulgt0 | |- ( ( ( -u A e. RR /\ 0 < -u A ) /\ ( -u B e. RR /\ 0 < -u B ) ) -> 0 < ( -u A x. -u B ) ) |
|
| 12 | 5 10 11 | syl2an | |- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ B < 0 ) ) -> 0 < ( -u A x. -u B ) ) |
| 13 | recn | |- ( A e. RR -> A e. CC ) |
|
| 14 | recn | |- ( B e. RR -> B e. CC ) |
|
| 15 | mul2neg | |- ( ( A e. CC /\ B e. CC ) -> ( -u A x. -u B ) = ( A x. B ) ) |
|
| 16 | 13 14 15 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( -u A x. -u B ) = ( A x. B ) ) |
| 17 | 16 | ad2ant2r | |- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ B < 0 ) ) -> ( -u A x. -u B ) = ( A x. B ) ) |
| 18 | 12 17 | breqtrd | |- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ B < 0 ) ) -> 0 < ( A x. B ) ) |