This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential uniqueness of reciprocals. Theorem I.8 of Apostol p. 18. (Contributed by NM, 29-Jan-1995) (Revised by Mario Carneiro, 17-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | receu | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> E! x e. CC ( B x. x ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recex | |- ( ( B e. CC /\ B =/= 0 ) -> E. y e. CC ( B x. y ) = 1 ) |
|
| 2 | 1 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> E. y e. CC ( B x. y ) = 1 ) |
| 3 | simprl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> y e. CC ) |
|
| 4 | simpll | |- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> A e. CC ) |
|
| 5 | 3 4 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> ( y x. A ) e. CC ) |
| 6 | oveq1 | |- ( ( B x. y ) = 1 -> ( ( B x. y ) x. A ) = ( 1 x. A ) ) |
|
| 7 | 6 | ad2antll | |- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> ( ( B x. y ) x. A ) = ( 1 x. A ) ) |
| 8 | simplr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> B e. CC ) |
|
| 9 | 8 3 4 | mulassd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> ( ( B x. y ) x. A ) = ( B x. ( y x. A ) ) ) |
| 10 | 4 | mullidd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> ( 1 x. A ) = A ) |
| 11 | 7 9 10 | 3eqtr3d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> ( B x. ( y x. A ) ) = A ) |
| 12 | oveq2 | |- ( x = ( y x. A ) -> ( B x. x ) = ( B x. ( y x. A ) ) ) |
|
| 13 | 12 | eqeq1d | |- ( x = ( y x. A ) -> ( ( B x. x ) = A <-> ( B x. ( y x. A ) ) = A ) ) |
| 14 | 13 | rspcev | |- ( ( ( y x. A ) e. CC /\ ( B x. ( y x. A ) ) = A ) -> E. x e. CC ( B x. x ) = A ) |
| 15 | 5 11 14 | syl2anc | |- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( B x. y ) = 1 ) ) -> E. x e. CC ( B x. x ) = A ) |
| 16 | 15 | rexlimdvaa | |- ( ( A e. CC /\ B e. CC ) -> ( E. y e. CC ( B x. y ) = 1 -> E. x e. CC ( B x. x ) = A ) ) |
| 17 | 16 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( E. y e. CC ( B x. y ) = 1 -> E. x e. CC ( B x. x ) = A ) ) |
| 18 | 2 17 | mpd | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> E. x e. CC ( B x. x ) = A ) |
| 19 | eqtr3 | |- ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> ( B x. x ) = ( B x. y ) ) |
|
| 20 | mulcan | |- ( ( x e. CC /\ y e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( B x. x ) = ( B x. y ) <-> x = y ) ) |
|
| 21 | 19 20 | imbitrid | |- ( ( x e. CC /\ y e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> x = y ) ) |
| 22 | 21 | 3expa | |- ( ( ( x e. CC /\ y e. CC ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> x = y ) ) |
| 23 | 22 | expcom | |- ( ( B e. CC /\ B =/= 0 ) -> ( ( x e. CC /\ y e. CC ) -> ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> x = y ) ) ) |
| 24 | 23 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( x e. CC /\ y e. CC ) -> ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> x = y ) ) ) |
| 25 | 24 | ralrimivv | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> A. x e. CC A. y e. CC ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> x = y ) ) |
| 26 | oveq2 | |- ( x = y -> ( B x. x ) = ( B x. y ) ) |
|
| 27 | 26 | eqeq1d | |- ( x = y -> ( ( B x. x ) = A <-> ( B x. y ) = A ) ) |
| 28 | 27 | reu4 | |- ( E! x e. CC ( B x. x ) = A <-> ( E. x e. CC ( B x. x ) = A /\ A. x e. CC A. y e. CC ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> x = y ) ) ) |
| 29 | 18 25 28 | sylanbrc | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> E! x e. CC ( B x. x ) = A ) |