This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | muldvds2 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) || N -> M || N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zmulcl | |- ( ( K e. ZZ /\ M e. ZZ ) -> ( K x. M ) e. ZZ ) |
|
| 2 | 1 | anim1i | |- ( ( ( K e. ZZ /\ M e. ZZ ) /\ N e. ZZ ) -> ( ( K x. M ) e. ZZ /\ N e. ZZ ) ) |
| 3 | 2 | 3impa | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) e. ZZ /\ N e. ZZ ) ) |
| 4 | 3simpc | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M e. ZZ /\ N e. ZZ ) ) |
|
| 5 | zmulcl | |- ( ( x e. ZZ /\ K e. ZZ ) -> ( x x. K ) e. ZZ ) |
|
| 6 | 5 | ancoms | |- ( ( K e. ZZ /\ x e. ZZ ) -> ( x x. K ) e. ZZ ) |
| 7 | 6 | 3ad2antl1 | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( x x. K ) e. ZZ ) |
| 8 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 9 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 10 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 11 | mulass | |- ( ( x e. CC /\ K e. CC /\ M e. CC ) -> ( ( x x. K ) x. M ) = ( x x. ( K x. M ) ) ) |
|
| 12 | 8 9 10 11 | syl3an | |- ( ( x e. ZZ /\ K e. ZZ /\ M e. ZZ ) -> ( ( x x. K ) x. M ) = ( x x. ( K x. M ) ) ) |
| 13 | 12 | 3coml | |- ( ( K e. ZZ /\ M e. ZZ /\ x e. ZZ ) -> ( ( x x. K ) x. M ) = ( x x. ( K x. M ) ) ) |
| 14 | 13 | 3expa | |- ( ( ( K e. ZZ /\ M e. ZZ ) /\ x e. ZZ ) -> ( ( x x. K ) x. M ) = ( x x. ( K x. M ) ) ) |
| 15 | 14 | 3adantl3 | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( ( x x. K ) x. M ) = ( x x. ( K x. M ) ) ) |
| 16 | 15 | eqeq1d | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( ( ( x x. K ) x. M ) = N <-> ( x x. ( K x. M ) ) = N ) ) |
| 17 | 16 | biimprd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( ( x x. ( K x. M ) ) = N -> ( ( x x. K ) x. M ) = N ) ) |
| 18 | 3 4 7 17 | dvds1lem | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) || N -> M || N ) ) |