This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Möbius function is a function into the integers. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | muf | |- mmu : NN --> ZZ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mu | |- mmu = ( x e. NN |-> if ( E. p e. Prime ( p ^ 2 ) || x , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) ) ) |
|
| 2 | 0z | |- 0 e. ZZ |
|
| 3 | neg1z | |- -u 1 e. ZZ |
|
| 4 | prmdvdsfi | |- ( x e. NN -> { p e. Prime | p || x } e. Fin ) |
|
| 5 | hashcl | |- ( { p e. Prime | p || x } e. Fin -> ( # ` { p e. Prime | p || x } ) e. NN0 ) |
|
| 6 | 4 5 | syl | |- ( x e. NN -> ( # ` { p e. Prime | p || x } ) e. NN0 ) |
| 7 | zexpcl | |- ( ( -u 1 e. ZZ /\ ( # ` { p e. Prime | p || x } ) e. NN0 ) -> ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) e. ZZ ) |
|
| 8 | 3 6 7 | sylancr | |- ( x e. NN -> ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) e. ZZ ) |
| 9 | ifcl | |- ( ( 0 e. ZZ /\ ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) e. ZZ ) -> if ( E. p e. Prime ( p ^ 2 ) || x , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) ) e. ZZ ) |
|
| 10 | 2 8 9 | sylancr | |- ( x e. NN -> if ( E. p e. Prime ( p ^ 2 ) || x , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) ) e. ZZ ) |
| 11 | 1 10 | fmpti | |- mmu : NN --> ZZ |