This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the Möbius function, which is zero for non-squarefree numbers and is -u 1 or 1 for squarefree numbers according as to the number of prime divisors of the number is even or odd, see definition in ApostolNT p. 24. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mu | |- mmu = ( x e. NN |-> if ( E. p e. Prime ( p ^ 2 ) || x , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmu | |- mmu |
|
| 1 | vx | |- x |
|
| 2 | cn | |- NN |
|
| 3 | vp | |- p |
|
| 4 | cprime | |- Prime |
|
| 5 | 3 | cv | |- p |
| 6 | cexp | |- ^ |
|
| 7 | c2 | |- 2 |
|
| 8 | 5 7 6 | co | |- ( p ^ 2 ) |
| 9 | cdvds | |- || |
|
| 10 | 1 | cv | |- x |
| 11 | 8 10 9 | wbr | |- ( p ^ 2 ) || x |
| 12 | 11 3 4 | wrex | |- E. p e. Prime ( p ^ 2 ) || x |
| 13 | cc0 | |- 0 |
|
| 14 | c1 | |- 1 |
|
| 15 | 14 | cneg | |- -u 1 |
| 16 | chash | |- # |
|
| 17 | 5 10 9 | wbr | |- p || x |
| 18 | 17 3 4 | crab | |- { p e. Prime | p || x } |
| 19 | 18 16 | cfv | |- ( # ` { p e. Prime | p || x } ) |
| 20 | 15 19 6 | co | |- ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) |
| 21 | 12 13 20 | cif | |- if ( E. p e. Prime ( p ^ 2 ) || x , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) ) |
| 22 | 1 2 21 | cmpt | |- ( x e. NN |-> if ( E. p e. Prime ( p ^ 2 ) || x , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) ) ) |
| 23 | 0 22 | wceq | |- mmu = ( x e. NN |-> if ( E. p e. Prime ( p ^ 2 ) || x , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) ) ) |