This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 1-1 onto function in maps-to notation which shifts a finite set of sequential integers. Formerly part of proof for fsumshft . (Contributed by AV, 24-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mptfzshft.1 | |- ( ph -> K e. ZZ ) |
|
| mptfzshft.2 | |- ( ph -> M e. ZZ ) |
||
| mptfzshft.3 | |- ( ph -> N e. ZZ ) |
||
| Assertion | mptfzshft | |- ( ph -> ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) : ( ( M + K ) ... ( N + K ) ) -1-1-onto-> ( M ... N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptfzshft.1 | |- ( ph -> K e. ZZ ) |
|
| 2 | mptfzshft.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | mptfzshft.3 | |- ( ph -> N e. ZZ ) |
|
| 4 | ovex | |- ( j - K ) e. _V |
|
| 5 | eqid | |- ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) = ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) |
|
| 6 | 4 5 | fnmpti | |- ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) Fn ( ( M + K ) ... ( N + K ) ) |
| 7 | 6 | a1i | |- ( ph -> ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) Fn ( ( M + K ) ... ( N + K ) ) ) |
| 8 | ovex | |- ( k + K ) e. _V |
|
| 9 | eqid | |- ( k e. ( M ... N ) |-> ( k + K ) ) = ( k e. ( M ... N ) |-> ( k + K ) ) |
|
| 10 | 8 9 | fnmpti | |- ( k e. ( M ... N ) |-> ( k + K ) ) Fn ( M ... N ) |
| 11 | simprr | |- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> k = ( j - K ) ) |
|
| 12 | 11 | oveq1d | |- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> ( k + K ) = ( ( j - K ) + K ) ) |
| 13 | elfzelz | |- ( j e. ( ( M + K ) ... ( N + K ) ) -> j e. ZZ ) |
|
| 14 | 13 | ad2antrl | |- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> j e. ZZ ) |
| 15 | 1 | adantr | |- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> K e. ZZ ) |
| 16 | zcn | |- ( j e. ZZ -> j e. CC ) |
|
| 17 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 18 | npcan | |- ( ( j e. CC /\ K e. CC ) -> ( ( j - K ) + K ) = j ) |
|
| 19 | 16 17 18 | syl2an | |- ( ( j e. ZZ /\ K e. ZZ ) -> ( ( j - K ) + K ) = j ) |
| 20 | 14 15 19 | syl2anc | |- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> ( ( j - K ) + K ) = j ) |
| 21 | 12 20 | eqtr2d | |- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> j = ( k + K ) ) |
| 22 | simprl | |- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> j e. ( ( M + K ) ... ( N + K ) ) ) |
|
| 23 | 21 22 | eqeltrrd | |- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> ( k + K ) e. ( ( M + K ) ... ( N + K ) ) ) |
| 24 | 2 | adantr | |- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> M e. ZZ ) |
| 25 | 3 | adantr | |- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> N e. ZZ ) |
| 26 | 14 15 | zsubcld | |- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> ( j - K ) e. ZZ ) |
| 27 | 11 26 | eqeltrd | |- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> k e. ZZ ) |
| 28 | fzaddel | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( k e. ZZ /\ K e. ZZ ) ) -> ( k e. ( M ... N ) <-> ( k + K ) e. ( ( M + K ) ... ( N + K ) ) ) ) |
|
| 29 | 24 25 27 15 28 | syl22anc | |- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> ( k e. ( M ... N ) <-> ( k + K ) e. ( ( M + K ) ... ( N + K ) ) ) ) |
| 30 | 23 29 | mpbird | |- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> k e. ( M ... N ) ) |
| 31 | 30 21 | jca | |- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> ( k e. ( M ... N ) /\ j = ( k + K ) ) ) |
| 32 | simprr | |- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> j = ( k + K ) ) |
|
| 33 | simprl | |- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> k e. ( M ... N ) ) |
|
| 34 | 2 | adantr | |- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> M e. ZZ ) |
| 35 | 3 | adantr | |- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> N e. ZZ ) |
| 36 | elfzelz | |- ( k e. ( M ... N ) -> k e. ZZ ) |
|
| 37 | 36 | ad2antrl | |- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> k e. ZZ ) |
| 38 | 1 | adantr | |- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> K e. ZZ ) |
| 39 | 34 35 37 38 28 | syl22anc | |- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> ( k e. ( M ... N ) <-> ( k + K ) e. ( ( M + K ) ... ( N + K ) ) ) ) |
| 40 | 33 39 | mpbid | |- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> ( k + K ) e. ( ( M + K ) ... ( N + K ) ) ) |
| 41 | 32 40 | eqeltrd | |- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> j e. ( ( M + K ) ... ( N + K ) ) ) |
| 42 | 32 | oveq1d | |- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> ( j - K ) = ( ( k + K ) - K ) ) |
| 43 | zcn | |- ( k e. ZZ -> k e. CC ) |
|
| 44 | pncan | |- ( ( k e. CC /\ K e. CC ) -> ( ( k + K ) - K ) = k ) |
|
| 45 | 43 17 44 | syl2an | |- ( ( k e. ZZ /\ K e. ZZ ) -> ( ( k + K ) - K ) = k ) |
| 46 | 37 38 45 | syl2anc | |- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> ( ( k + K ) - K ) = k ) |
| 47 | 42 46 | eqtr2d | |- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> k = ( j - K ) ) |
| 48 | 41 47 | jca | |- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) |
| 49 | 31 48 | impbida | |- ( ph -> ( ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) <-> ( k e. ( M ... N ) /\ j = ( k + K ) ) ) ) |
| 50 | 49 | mptcnv | |- ( ph -> `' ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) = ( k e. ( M ... N ) |-> ( k + K ) ) ) |
| 51 | 50 | fneq1d | |- ( ph -> ( `' ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) Fn ( M ... N ) <-> ( k e. ( M ... N ) |-> ( k + K ) ) Fn ( M ... N ) ) ) |
| 52 | 10 51 | mpbiri | |- ( ph -> `' ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) Fn ( M ... N ) ) |
| 53 | dff1o4 | |- ( ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) : ( ( M + K ) ... ( N + K ) ) -1-1-onto-> ( M ... N ) <-> ( ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) Fn ( ( M + K ) ... ( N + K ) ) /\ `' ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) Fn ( M ... N ) ) ) |
|
| 54 | 7 52 53 | sylanbrc | |- ( ph -> ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) : ( ( M + K ) ... ( N + K ) ) -1-1-onto-> ( M ... N ) ) |