This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, deduction version. (Contributed by Alexander van der Vekens, 11-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpoxopoveq.f | |- F = ( x e. _V , y e. ( 1st ` x ) |-> { n e. ( 1st ` x ) | ph } ) |
|
| mpoxopoveqd.1 | |- ( ps -> ( V e. X /\ W e. Y ) ) |
||
| mpoxopoveqd.2 | |- ( ( ps /\ -. K e. V ) -> { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } = (/) ) |
||
| Assertion | mpoxopoveqd | |- ( ps -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoxopoveq.f | |- F = ( x e. _V , y e. ( 1st ` x ) |-> { n e. ( 1st ` x ) | ph } ) |
|
| 2 | mpoxopoveqd.1 | |- ( ps -> ( V e. X /\ W e. Y ) ) |
|
| 3 | mpoxopoveqd.2 | |- ( ( ps /\ -. K e. V ) -> { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } = (/) ) |
|
| 4 | 1 | mpoxopoveq | |- ( ( ( V e. X /\ W e. Y ) /\ K e. V ) -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) |
| 5 | 4 | ex | |- ( ( V e. X /\ W e. Y ) -> ( K e. V -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) ) |
| 6 | 5 2 | syl11 | |- ( K e. V -> ( ps -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) ) |
| 7 | df-nel | |- ( K e/ V <-> -. K e. V ) |
|
| 8 | 1 | mpoxopynvov0 | |- ( K e/ V -> ( <. V , W >. F K ) = (/) ) |
| 9 | 7 8 | sylbir | |- ( -. K e. V -> ( <. V , W >. F K ) = (/) ) |
| 10 | 9 | adantr | |- ( ( -. K e. V /\ ps ) -> ( <. V , W >. F K ) = (/) ) |
| 11 | 3 | eqcomd | |- ( ( ps /\ -. K e. V ) -> (/) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) |
| 12 | 11 | ancoms | |- ( ( -. K e. V /\ ps ) -> (/) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) |
| 13 | 10 12 | eqtrd | |- ( ( -. K e. V /\ ps ) -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) |
| 14 | 13 | ex | |- ( -. K e. V -> ( ps -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) ) |
| 15 | 6 14 | pm2.61i | |- ( ps -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) |